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1. Maxwell’s equations in linear media are

aD oB
V‘D=p, VXH“—'J‘*‘E, V‘B=0, VXE=—E.
(i) Consider a region of space V bounded by a closed surface S, and
also let C' be a closed contour in space with an -open surface S’
spanning the contour. Explaining the notation used, derive from
the above equations the integral forms

fD-dS:[pdV, j{H-d1=f(J+a—D)-ds'
s v c s ot

fB-dS=O, %E-dl:-— ?E-dS'. [6 marks}
s Je s Ot

(i) Consider two regions, labelled by i = 1,2, containing different
linear media, which meet at an infinite two-dimensional boundary,
with unit normal n to the boundary. Let E;, D;, B;, H; fori=1,2
label the electromagnetic fields in the two regions.

Using a suitable small, shallow cylinder, straddling the boun&a’r’y
between the two regions, with surface charge density o, derive the
boundary conditions

-(Dg—Dl)'n=0', (Bz—Bl)n=0,

from two of the-integral equations above.

Now considering a suitable small rectangle straddling the bound-
ary, with current density K on the surface of the rectangle, derive
the further boundary conditions

nX(Hg—H1)=K, nX(Ez—E1)=0,

[8 marks]

(iit) Consider incident, refracted and reflected waves at this matter
interface, with

Bine = Boe 4, By, = By, By = Bemii'),

Assume that the matter interface is at z = 0, and that the incident
wave has electric field parallel to the z—z plane. Let the angles of
incidence, refraction and reflection be 8,8, 6" respectively. Show

that the boundary conditions on the fields E at the interface imply
that

— Fy cos geikzsiho + E{,’cos gueikz'sino" = —E[', cos ' F'zsing’
must be true for all z. Show that this implies that 0 = 8" (the

law of reflection), and ksin .= k'sin &' (Snell’s law). .[6 marks].

please turn-to the next page
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2. For an oscillating electric dipole with strength p, oscillating in time as
et the vector potential is given by

1 et e
A"d'(r, t) = _m—r ? et

where r = (z,9,2), r = a2* + ¥ + 22 and k = w/e,

(i) Show that in the far zone, where kr >> ‘1, this results in the
magnetic field

1 k‘.’. eikr _:
B*“(p) = s pXp—e

where n = Ir. [4 marks]

(i) For the electric field E“%(p), use the source-free Maxwell equation
E =2V x B and the fact that the time dependence of the fields
is e~%* to deduce that

E*(p) = = V x B¢ (p) e~ ™t
and hence that in the far zone _
Ee'd'(p) —=c Bc.d.(p) Xn.
(5 marks)
(tit) The vector potential for an oscillating magnetic dipole is given by
pikr

. e £
Am'd'(l‘, t) =ik E:-;: --;_'— nxm ¢-w{-;

Show that this is proportional to the magnetic field for the electr:c
dipole, with p replaced by m:.

Am.d. — E_ Be.d.(p - m)

Thus prove that the electric and magnetic fields for a magnet:c
dipole are given by

Bmd(m) = E"d(p —m),

Em.d.(m) —— =Bc.d.(pr - m)

(8 marks}.
(iv) How are the polarisation vectors, the directions of the magnetic
fields, and the directions of the radiation n oriented with respect

to each other in the two-cases of electric and magnetic dipole
radiation in the far zone ?

[3 marks]

please turn to the next page
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3. (i) Show in the Lorentz gauge (8*A, = 0), with A* = (1, A) and
j* = (ep, J), that the Maxwell equation 8*F,,, = o7, reduces to

1
"OuA = poJ, 9"0,®= =P
: 4]
[3 marks]

(if) Integrate the equation for A above with [ e™®* to obtain the
Fourier transformed equation

(V* + B)A(x,w) = —po(x,0), (1)

with k2 = w?/c?. [4 marks]

(iii) Suppose that there exists a Green function Gr(x,x'), satisfying
(V2 + E))Gi(x,X) = —4nd®(x—%). (2)

Show that
Alx,w) = %[Gk(x, XN I (%, w)d3x’
solves equation (1) above. [3-marks]

(iv) Give an argument why Gr(x,x') must be purely a function of
T = |r| = |x — x'|. Show that in this case equation (2) becomes

14 " :
;:52‘(7‘@&(?”)) + E*Gy(r) = ~4nb%(r)
and hence that when r # 0, Gi(r) is'given by

. 1. . . ,
Gi(r) = ;—(Ae'k’" + Be™%), " (3).

for some constants A, B. |5 marks]
F o : ats 7 S W TR S | plr 53
{v) A solution of Poisson’s equation V¢ = —xPisd == [ e 1 r'.

Use this fact to show that when = — 0, (3) above remains a solu-
tion of equation (2) if
A+B=1

[5 marks]

please turn to the next page
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4. Consider the Maxwell equations in a vacuum with sources -

V:-B=0, Vx E_,--a-]-a-

ot’

1
V.-E_=—,0, VXB=}IQ€06—E+#0J.,
€ at

(1) Show that the first two of these equations may be solved by intro-
ducmg the potentials A and @, and writing

ot

_Show that the other two Maxwell equations then become

d 1
2 — - = e —
Ve® + 5 (V-A) =P
2p _ 1 5%A . 180,
VA o ,V(V.A+—cz—3t ) = —p1pJ.,

(6 marks]
(ii) Show that the definitions of the potentials are unchanged if we
make the gauge transformations

A= A3VA, <I)-+<I>—%t\-

for any fupcﬁion A [2 marRs‘].’

(iii) In Lorentz covariant notation, Maxwell’s equations above may be
written

aprp + 3‘;Fp}‘ + apF#y = 0, anF‘gy - r—ﬂ[)jy-_‘
Show that the first of these equations is solved by writing
Fpp = a;;Av = aVAJ.I"

Write down the gauge transformations on A, and show that they

leave F,, invariant. [4 marks] °

(iv) Consider. Maxwell’s equations in the Coulomb _gauge V+ A.= 0.
Show that the equation for A can be written

1 6%A
VZA - E-z- at2 = ""I"'Jh

where J, is transverse . (V+J¢ = 0). You may use the result that
VzFeTx["' —478% (%’ = x) and the identities V2 = VV.J =V x

V x J, and J(x) = f 63(x' ~ x)I(x') d*x’ for any vector field J.
" [8 marks]

please turn to the next page
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5. The electric and magnetic fields generated by a charged particle moving
with velocity ¢f and-acceleration ¢f are given by the Lienard-Wiechert
expressions

1
B= E[n X Elyet

_q n b ) ¢ lpax[m—4g)x f]

" dmep LyZR2(1— B-nphret  dmeocl (1—fB-n)3R Jret’
where n is the unit vector which points'from the point on the particle
trajectory to the field point x, with x = r(7) = nR, and the retarded
time is f,¢ =t — R/c.

(i) Show that for the case when the acceleration is parallel to the
velocity, the electric field far from the charge is given by
[ n x {n x g ]
41reo cl(1-p-nPBRlret

[2 marks]

(if) Show that in this case, the Poynting vector S = -—-E x B, far from
the charge is

bl

¢ 1 [( Bsind ]2

- 471:60 Z’I'E

1-p-n)*Rlret
where 8 is the angle between n and the common-direction of the
velocity and acceleration of the particle. . {4 marks]
(iii) Show that the power radiated per unit solid angle is given by
dP(t") 9 dt
I TS

and hence equals
dP(t) _ ¢ 1 - Bsin? @
dQ  dmegdmc (1 — Beosh)

[6 marks]
(iv) For non-relativistic motion, deduce from this the Larmor formula
P @ 1 .,
a0~ 4w a0 6.
(2 marks]

(v) Without making the non-relativistic approximation, show that the
maximum intensity of radiation is observed at the angle

fmax = cos™! %(\/1 + 1562 —1).

[6 marks]

please turn to the next page
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Formula Sheet

ax(bxc) =(a-c)b=(a -:b)c,

V- (ya) =a-Vy49yV-a,

V x (1pa) = (Vy) x a+9¥(V x a),
Vx(Vxa) =V(V:a)-Via,
V(¢(r)) = ny/(r).

Maxwell’s equations:

F =q(E+vxB).
V:J+p=0.

For linear isotropic media:

D=cE=¢gE+P, H=,—1-B=VL,B:_M.Z
’ H Ho

dre = (;2(;lt2 — de - dy2 —d2? = dx“nagdxﬁ,.ﬁ

+1  fa=pg=0
Nog = {_'I. ifa=0=1,2,3
0 fa#p

OaFP = 0,0° 4 = P0uA™ = i?;  FoP =574 = P A°,
OaFpy + 03 Fye -+ Oy Fap = 0,
0 ~E'/c rE”Zc —E‘:/c
=g o
Ble =B B o

In spherical coordinates (r, 8, ¢), for a scalar field G(r, 8, ),

12

2y _ 1 a (. 4G 1 &G
v G"_rarz(’G) r2sind 99 S‘“oaa r2sin® 0 0¢?

A solution of Poisson’s equation V2¢ =~tpis¢p=;f r_':,' d3r',

End of Examination Paper Prof WJ Spence
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