MSci EXAMINATION

PHY-414 (MSci 4241) Relativistic Quantum Mechanics

Time Allowed: 2 hours 30 minutes

Date:

Time:

Instructions: Answer THREE QUESTIONS only. Each question carries 20 marks. An indicative marking-scheme is shown in square brackets [] after each part of a question. A formula sheet is provided at the end of the examination paper.

Data: We use units where $\hbar = c = 1$. A formula sheet is provided at the end of the paper.

DO NOT TURN TO THE FIRST PAGE OF THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE INVIGILATOR

This page should be blank

Question 1: Angular momenta $\hat{\vec{J}}_1$ and $\hat{\vec{J}}_2$ are combined to total angular momentum (set $\hbar = 1$)

$$\widehat{\vec{J}} = \widehat{\vec{J}}_1 + \widehat{\vec{J}}_2 \,.$$

(a) Derive the maximum value of the quantum number j for $\hat{\vec{J}}^2$ in terms of the quantum numbers j_1 and j_2 for $(\hat{\vec{J}}_1)^2$ and $(\hat{\vec{J}}_2)^2$.

(b) Show that $[\hat{J}_{-}, \hat{J}_{z}] = \hat{J}_{-}$ using the standard commutator algebra for angular momentum operators and $\hat{J}_{-} = \hat{J}_{x} - i\hat{J}_{y}$. Use this result to show that $\hat{J}_{-}|j,m\rangle$ is proportional to the eigenstate $|j,m-1\rangle$.

(c) Angular momenta $j_1 = k$, where k is a positive integer or half-integer, and $j_2 = 1$ are combined. Construct the following eigenstates of \hat{J}^2 and \hat{J}_z :

$$|k+1,k+1\rangle$$
 [3]

$$|k+1,k\rangle$$
 [4]

$$|k,k\rangle$$
 [6]

You may assume that $\widehat{J}_{-}|j,m\rangle = \sqrt{(j-m+1)(j+m)}|j,m-1\rangle.$

Question 2: The Dirac equation and charge conjugation

(a) Describe what is meant by a symmetry of a wave equation.

(b) Show that the free Dirac equation is invariant under charge conjugation C, where C acts trivially on space time coordinates and on the wavefunction as $\Psi \to \Psi_C = C\gamma^0 \Psi^*$ with $C = i\gamma^2\gamma^0$.

(c) Determine the behaviour under charge conjugation of the Dirac covariants $\overline{\Psi}\gamma^{\mu}\Psi$ and $\overline{\Psi}\gamma^{\mu}\gamma_{5}\Psi$.

[8]

(d) Hence, discuss why charge conjugation invariance is broken by the weak interactions.

[2]

(You may assume that $C^{\dagger} = -C$, $C^2 = -\mathbb{I}$, $C\gamma^0(\gamma^{\mu})^* = -\gamma^{\mu}(C\gamma^0)$, $\gamma^0 C\gamma^0 = -C$ and $\gamma^{\mu}C = -C(\gamma^{\mu})^T$ where T denotes transpose and \dagger denotes Hermitian conjugation. You may also assume that $\gamma_5^{\dagger} = \gamma_5^T = \gamma_5$ and $\{\gamma^{\mu}, \gamma_5\} = 0$.)

Question 3: Massless Dirac particles — neutrinos: In the following use the *chiral representation* of the Dirac matrices

$$\beta = \left(\begin{array}{cc} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{array}\right) \ , \ \alpha^i = \left(\begin{array}{cc} \sigma^i & 0 \\ 0 & -\sigma^i \end{array}\right) \ i = 1, 2, 3 \, ,$$

where the σ^i denote the Pauli matrices.

- (a) Define the helicity of a particle. What is the form of the helicity operator for a Dirac particle?
- (b) Describe (in words) how we have to modify the solutions of the Dirac equation to be able to describe massless neutrinos and anti-neutrinos.
 - [3]

[6]

[4]

[2]

(c) Consider positive energy, plane wave solutions of the Dirac equation (using the above Dirac matrices)

$$\Psi = e^{-ip \cdot x} \left(\begin{array}{c} \phi \\ \chi \end{array} \right) \,,$$

where ϕ and χ denote two component column spinors. Derive equations for ϕ and χ for non-zero mass.

- Ind γ in the massless case (m=0). What are the Helicities of
- (d) Derive the equations for ϕ and χ in the massless case (m = 0). What are the Helicities of ϕ and χ ?
- (e) Show how to construct spinors to describe massless neutrinos with helicity $-\frac{1}{2}$ in terms of a positive energy solution of the massless Dirac equation.

[5]

Question 4: The Dirac propagator:

(a) Show that for $p^2 \neq m^2$ the momentum space propagator for a free relativistic electron is given by \sim

$$S_F(p) = (p - m)^{-1}.$$
[6]

(b) Show that for $p^2 \neq m^2$ this can be written as

$$\widetilde{S}_F(p) = \frac{(\not p + m)}{p^2 - m^2} \,.$$
[2]

(c) In order to regularize the singularity at $p^2 = m^2$ we introduced the Feynman prescription for the Dirac propagator

$$\widetilde{S}_F(p) = \frac{(\not p + m)}{p^2 - m^2 + i\epsilon},$$

where ϵ is a small, positive, real constant. Show that for t' < t the free electron propagator $S_F(x', x)$ contains only negative frequency modes. Briefly discuss the Feynman boundary conditions that lead to this $i\epsilon$ (Feynman) prescription.

- [6]
- (d) The propagator $\widehat{S}_F(x',x)$ for an electron in an electro-magnetic 4-potential A_μ satisfies

$$(i\nabla - eA' - m\mathbb{I})\widehat{S}_F(x', x) = \delta^4(x' - x)\mathbb{I}.$$

Derive an integral equation for $\widehat{S}_F(x',x)$ and, hence, show to first order in e that

$$\widehat{S}_F(x',x) = S_F(x',x) + e \int d^4 x_1 S_F(x',x_1) \mathcal{A}(x_1) S_F(x_1,x) ,$$

where $S_F(x', x)$ denotes the free electron propagator.

[6]

please turn to the next page

Question 5: Scattering and Feynman rules:

- (a) Describe briefly the physical meaning of the scattering amplitude S_{fi} . For a relativistic electron scattering in an electro-magnetic field, write down (without proof) the expression for S_{fi} to first order in the interaction in propagator theory and explain the quantities appearing in the expression.
- (b) Write down the relation between the scattering amplitude S_{fi} and the invariant amplitude M_{fi} (also called invariant matrix element). Only state the result, no proof is needed. For concreteness you may use the example of a scattering process of two Dirac particles into two Dirac particles.
- (c) State the Feynman rules (in momentum space) for processes involving electrons, positrons and photons to calculate M_{fi} . Draw the tree-level Feynman diagrams for electron-electron scattering into two electrons.
- (d) For the case of electron-positron scattering into electron-positron, draw all contributing treelevel Feynman diagrams and determine M_{fi} or S_{fi} using the Feynman rules. (Alternatively, you may use propagator theory to find S_{fi} .)

[6]

[4]

[3]

[7]

Formula Sheet (in units $\hbar = c = 1$)

Four-vectors:

$$\begin{aligned} a \cdot b &= a^{\mu}b_{\mu} = a_{\mu}b^{\mu} = a^{\mu}b^{\nu}g_{\mu\nu} = a_{\mu}b_{\nu}g^{\mu\nu} \text{ with } g_{\mu\nu} = g^{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \\ x^{\mu} &= (t, \vec{x}) \quad , \quad x_{\mu} = (t, -\vec{x}) \\ \nabla^{\mu} &= \frac{\partial}{\partial x_{\mu}} = \left(\frac{\partial}{\partial t}, -\vec{\nabla}\right) \quad , \quad \nabla_{\mu} = \frac{\partial}{\partial x^{\mu}} = \left(\frac{\partial}{\partial t}, \vec{\nabla}\right) \quad , \quad \hat{p}^{\mu} = i\nabla^{\mu} \quad , \quad \hat{p}_{\mu} = i\nabla_{\mu} \end{aligned}$$

Klein-Gordon equation: $(-\hat{p}\cdot\hat{p}+m^2)\psi = (\nabla_{\mu}\nabla^{\mu}+m^2)\psi = (\Box+m^2)\psi = 0$

Free Dirac equation in Hamiltonian form: $i\frac{\partial}{\partial t}\Psi = (\vec{\alpha}\cdot\hat{\vec{p}} + \beta m)\Psi$, or in covariant form:

$$(\hat{p} - m)\Psi = (\gamma \cdot \hat{p} - m)\Psi = (\gamma^{\mu}\hat{p}_{\mu} - m)\Psi = 0$$

Dirac and Gamma matrices:

$$(\alpha^{i})^{2} = \mathbb{I}, \ i = 1, 2, 3; \ \beta^{2} = \mathbb{I}; \ \alpha^{i}\alpha^{j} + \alpha^{j}\alpha^{i} = 0, \ i \neq j; \ \alpha^{i}\beta + \beta\alpha^{i} = 0, \ i \neq j;$$

$$\gamma^{0} = \beta, \ \gamma^{i} = \beta\alpha^{i}, \ \{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}\mathbb{I},$$

$$\gamma_{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}$$
(1)

Dirac representation:

$$\alpha^{i} = \begin{pmatrix} 0 & \sigma^{i} \\ \sigma^{i} & 0 \end{pmatrix}, i = 1, 2, 3, \beta = \begin{pmatrix} \mathbb{I} & 0 \\ 0 & -\mathbb{I} \end{pmatrix},$$

where the Pauli matrices are

$$\sigma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \quad \sigma^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} , \quad \sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} .$$

Note that $\alpha^i \text{, }\beta$ and γ^0 are Hermitian, wheras the γ^i are anti-Hermitian.

End of Examination Paper

Dr A Brandhuber