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1 Symmetries and Angular Momentum

1.1 Symmetries and Conservation Laws

In Quantum Mechanics (QM), for an observable A without explicit time dependence1 we
have

i~
d〈A〉
dt

= 〈Ψ|[Â, Ĥ]|Ψ〉 , (1.1)

for any state |Ψ〉 and where

〈A〉 = 〈Ψ|Â|Ψ〉 , (1.2)

is the expectation value of A. If
[Â, Ĥ] = 0 , (1.3)

then
d〈A〉
dt

= 0 , (1.4)

and we say that A is a conserved quantitity or constant of motion.

A symmetry is a transformation on the coordinates of a system which leaves the
Hamiltonian H invariant. We shall see that conservation laws are the consequence of
symmetries of a system. Symmetries are very powerful since they can be used to derive
results for a system even when we do not know the details of the dynamics involved.

1.2 Translational Invariance

First consider a single particle. If ~x is the position vector, then a translation is the
operation

~x→ ~x′ = ~x+ ~a . (1.5)

If Ĥ is invariant then
Ĥ(~x′) = Ĥ(~x+ ~a) = Ĥ(~x) . (1.6)

For an infinitesimal displacement we can make a Taylor expansion2

Ĥ(~x+ ~a) ∼= Ĥ(~x) + ~a · ~∇Ĥ(~x) , (1.7)

ignoring higher powers of ~a. Thus, if Ĥ is invariant,

0 = Ĥ(~x+ ~a)− Ĥ(~x) = ~a · ~∇Ĥ(~x) . (1.8)

1i.e. the QM operator Â corresponding to the observable A obeys ∂Â/∂t = 0.
2The symbol ∼= indicates that we only expand to first order in ~a and suppress all higher order terms.
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In general for the momentum operator ~̂P and any other operator Ô(~x) we have

[ ~̂P , Ô]Ψ = [−i~~∇, Ô]Ψ

= −i~~∇(ÔΨ)− Ô(−i~Ψ)

= −i~(~∇Ô)Ψ , (1.9)

where we have suppressed the explicit ~x and t dependence. Since eqn. (1.9) is true for
arbitrary wavefunctions Ψ

[ ~̂P , Ô(~x)] = −i~~∇Ô(~x) . (1.10)

In particular for Ô = Ĥ

[ ~̂P , Ĥ] = −i~~∇Ĥ . (1.11)

Now,

0 = −i~~a · ~∇Ĥ = ~a · [ ~̂P , Ĥ] (1.12)

and since this is true for an arbitrary displacement vector ~a we find

[ ~̂P , Ĥ] = 0 . (1.13)

We conclude that momentum is a conserved quantity d〈~P 〉
dt

= 0 if the Ĥ is translationally
invariant.

Take e.g.

Ĥ = − ~2

2m
~∇2 + V (~x) (1.14)

For the translation, ~x′ = ~x+ ~a, in particular x′ = x+ a

⇒ ∂

∂x
=
∂x′

∂x

∂

∂x′
=

∂

∂x′
(1.15)

and similarly for y and z. Thus ~∇ and ~∇2 are invariant under translations and

Ĥ(~x′) = Ĥ(~x+ ~a) = − ~2

2m
~∇′2 + V (~x′)

= − ~2

2m
~∇2 + V (~x+ ~a) . (1.16)

Hence, for a translationally invariant Hamiltonian we must require

V (~x+ ~a) = V (~x) , (1.17)

which is only true for a (trivial) constant potential, i.e. for a free particle. Thus, the
momentum of a free particle is conserved in QM in the sense

d〈~P 〉
dt

= 0 . (1.18)
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Consider now a two particle system (easily generalised to N particles). If the two
particles have position vectors ~x1 and ~x2, the invariance condition for the translation of
the system through ~a reads

Ĥ(~x1, ~x2) = Ĥ(~x1 + ~a, ~x2 + ~a) . (1.19)

Then for an infinitesimal translation

Ĥ(~x1 + ~a, ~x2 + ~a) ∼= Ĥ(~x1, ~x2) + ~a · ~∇1Ĥ(~x1, ~x2) + ~a · ~∇2Ĥ(~x1, ~x2) , (1.20)

we find that translational invariance implies

0 = ~a · (~∇1 + ~∇2)Ĥ(~x1, ~x2) , (1.21)

and the total momentum operator is

~̂P = ~̂P 1 + ~̂P 2 , (1.22)

where
~̂P 1 = −i~~∇1 and ~̂P 2 = −i~~∇2 . (1.23)

Identical to the one particle case, for any operator Ô(~x1, ~x2),

[ ~̂P 1, Ô(~x1, ~x2)] = −i~~∇1Ô(~x1, ~x2) and [ ~̂P 2, Ô(~x1, ~x2)] = −i~~∇2Ô(~x1, ~x2) , (1.24)

and so

[ ~̂P , Ô(~x1, ~x2)] = −i~(~∇1 + ~∇2)Ô(~x1, ~x2) . (1.25)

This is true in particular for Ô = Ĥ. Thus,

0 = −i~~a · (~∇1 + ~∇2)Ĥ = ~a · [ ~̂P , Ĥ] . (1.26)

Since this must be true for arbitrary translation vector ~a, we have

[ ~̂P , Ĥ] = 0 , (1.27)

and total momentum is conserved in the sense of QM i.e. d〈~P 〉
dt

= 0.

1.3 Rotational Invariance

Just as translational invariande is associated with conservation of momentum, it turns out
that rotational invariance is associated with conservation of angular momentum (AM).

Take spherical polar coordinates and take the axis of rotation to be the z-axis. Spec-
ify the position vector ~x in spherical polar coordinates (r, θ, φ) of the point. Then the
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symmetry operation ~x→ ~x′ corresponding to a rotation by an angle α about the z−axis
is

(r, θ, φ)→ (r′, θ′, φ′) = (r, θ, φ+ α) . (1.28)

For the Hamiltonian to be invariant under rotations about the z-axis

Ĥ(~x′) = Ĥ(~x)

⇐⇒ Ĥ(r′, θ′, φ′) = Ĥ(r, θ, φ)

⇐⇒ Ĥ(r, θ, φ+ α) = Ĥ(r, θ, φ) . (1.29)

For an infinitesimal rotation

Ĥ(r, θ, φ+ α) ∼= Ĥ(r, θ, φ) + α
∂

∂φ
Ĥ(r, θ, φ) , (1.30)

and, hence, for invariance of Ĥ

0 = Ĥ(r, θ, φ+ α)− Ĥ(r, θ, φ) = α
∂

∂φ
Ĥ(r, θ, φ)

−→ ∂

∂φ
Ĥ(r, θ, φ) = 0 . (1.31)

The z−component of the orbital AM operator written in spherical coordinates is3

L̂z = −i~ ∂

∂φ
(1.32)

In general, for any other operator Ô,

[L̂z, Ô]Ψ = −i~[
∂

∂φ
, Ô] = −i~(

∂

∂φ
(ÔΨ)− Ô ∂

∂φ
Ψ) = −i~∂Ô

∂φ
Ψ . (1.33)

This is true for arbitrary wavefuntions Ψ, thus

[L̂z, Ô] = −i~∂Ô
∂φ

, (1.34)

and in particular for Ô = Ĥ,

[L̂z, Ĥ] = −i~∂Ĥ
∂φ

. (1.35)

If the Hamiltonian is invariant under rotation about the z-axis, we now conclude that

[L̂z, Ĥ] = 0 . (1.36)

3In cartesian coordinates ~x = (x, y, z): L̂z = (~̂x× ~̂P )z = −i~(x ∂
∂y − y ∂

∂x ) . The other components, L̂x

and L̂y, can be obtained by cyclic permutation of (x, y, z).
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We can define angles φx and φy analogous to φz ≡ φ for rotations about the x and y-axis.

If Ĥ is also invariant under rotations about the x and y-axis we will conclude that

[L̂x, Ĥ] = [L̂y, Ĥ] = [L̂z, Ĥ] = 0 i.e. [~̂L, Ĥ] = 0 . (1.37)

Thus AM is a constant of motion
d〈~L〉
dt

= 0 . (1.38)

Any rotation can be built out of successive rotations about the x, y and z-axis.

Whenever Ĥ is invariant under arbitrary rotations the AM ~L is a conserved quantity.
We must construct such an Ĥ out of scalars i.e. invariants under rotations. The simplest
examples of scalars are the magnitude (length) of a vector or the scalar product of two
vectors. For example, consider the Hamiltonian for a particle moving in a central potential
such as the Coulomb potential

Ĥ = − ~2

2m
~∇2 + V (|~x|) . (1.39)

Because ~∇2 = ~∇· ~∇ and |~x| are scalars, so is the Hamiltonian and orbital AM is conserved.

This discussion generalizes immediately to two (or more) particles:

For 2 particles, the Hamiltonian is a function of two sets of spherical coordinates
(r1, θ1, φ1) and (r2, θ2, φ2) so that

Ĥ = Ĥ(r1, θ1, φ1; r2, θ2, φ2) . (1.40)

The invariance condition for rotation of the system by an angle α about the z-axis is

Ĥ(r1, θ1, φ1; r2, θ2, φ2) = Ĥ(r1, θ1, φ1 + α; r2, θ2, φ2 + α) , (1.41)

and for an infinitesimal rotation

Ĥ(r1, θ1, φ1 + α; r2, θ2, φ2 + α) ∼= Ĥ(r1, θ1, φ1; r2, θ2, φ2) + α∂φ1Ĥ + α∂φ2Ĥ , (1.42)

where we defined ∂φ ≡ ∂
∂φ

. Invariance of Ĥ gives

0 = Ĥ(r1, θ1, φ1 + α; r2, θ2, φ2 + α)− Ĥ(r1, θ1, φ1; r2, θ2, φ2)

= α(∂φ1 + ∂φ2)Ĥ

−→ (∂φ1 + ∂φ2)Ĥ = 0 . (1.43)

The z-components of the orbital AM operator for the two particles are

L̂1z = −i~∂φ1 , L̂2z = −i~∂φ2 . (1.44)
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The z-component of the total orbital AM is:

L̂z = L̂1z + L̂2z . (1.45)

Much as before, for any operator O,

[L̂z, Ô] = −i~(∂φ1 + ∂φ2)Ô , (1.46)

and in particular
[L̂z, Ĥ] = −i~(∂φ1 + ∂φ2)Ĥ . (1.47)

If the Hamiltonian is invariant under rotations about the z-axis, we now conclude that

[L̂z, Ĥ] = 0 . (1.48)

By also considering rotations about the x and y-axis we conclude that if Ĥ is invariant
under arbitrary rotations then

[~̂L, Ĥ] = 0 , (1.49)

so total AM is a constant of motion

d〈~L〉
dt

= 0 . (1.50)

As usual the orbital AM operators obey the (SO(3) or SU(2)) algebra

[L̂x, L̂y] = i~L̂z , [L̂x, L̂y] = i~L̂z , [L̂x, L̂y] = i~L̂z . (1.51)

Consequently, it is only possible to know simultaneously the values of one component ~L
and ~L2, for example, Lz and ~L2. Therefore, we may take the conserved quantities to be
Lz and ~L2.

An atom with atomic number Z with Coulomb forces between the nucleus and the
electrons and between the electrons is an example of a system with the necessary rotational
invariance for conservation of AM. In this case:

Ĥ = − ~2

2m

Z∑
i=1

~∇2
i −

Z∑
i=1

Ze2

4πε0|~xi|
+

Z∑
i,j=1,i<j

e2

4πε0|~xi − ~xj|
, (1.52)

where ~∇i acts on the coordinates of the i-th electron, and ~xi is the position vector of
the i-th electron relative to the nucleus. As before, ~∇2

i and |~xi| are scalars (rotationally

invariant) and so is |~xi − ~xj|, so that Ĥ is rotationally invariant.

Remark: Generally for a system with spin it is the total AM

~̂J = ~̂L+ ~̂S (1.53)
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that commutes with the Hamiltonian

[ ~̂J, Ĥ] = 0 (1.54)

if Ĥ is rotationally invariant, and then 〈Jz〉 and 〈 ~J2〉 are constants of motion.

For the atomic (non-relativistic) Hamiltonian above, 〈Lz〉 and 〈~L2〉 are also constants
of motion, because the spin does not appear explicitly in the Hamiltion. This is a mani-
festation of the fact that spin is an effect of Special Relativity as we will see later in the
course. However, if we include the Spin-Orbit interaction due to Relativistic effects

ĤSpin−Orbit =
1

2m2
ec

2

1

r

dV

dr
~̂L · ~̂S , (1.55)

for an electron moving in a central potential V (r), then ~̂L does not commute with the

complete Hamiltonian. Then, only 〈Jz〉 and 〈 ~J2〉 are conserved quantities.

1.4 Addition of Angular Momentum

For a particle with orbital AM operator ~̂L and spin angular momentum operator ~̂S we
often need to construct the eigenstates of the total AM operator

~̂J = ~̂L+ ~̂S , (1.56)

in terms of eigenstates of ~̂L and ~̂S. (For convenience we will drop the ̂ for operators
from now on.) More precisely, we need to construct the simultaneous eigenstates |j,m〉
of ~J2 and Jz in terms of simultaneous eigenstates4 |l,ml〉 of ~L2 and Lz and |s,ms〉 of ~S2

and Sz.

Recall from QM that for eigenvalue of ~L2 equal to l(l + 1)~2 with l an integer, the
eigenvalues of Lz are ml~ with ml taking values ml = −l,−l+ 1, . . . , l− 1, l and similarly
for ~S and ~J where s and j are integer or half-integer.

Also for a 2 particle system, we often need simultaneous eigenstates |jm〉 of the total

AM operators ~J2 and Jz in terms of simultaneous eigenstates |j1m1〉 of ~J2
1 and J1z and

|j2m2〉 of ~J2
2 and J2z.

In the following we assume that all eigenstates are ”orthonormalized” in the familiar
fashion, e.g. 〈jm|j′m′〉 = δjj′δmm′ .

4In QM we encounter the eigenstates |l, ml〉 when the Schrödinger equation is solved in spherical
coordinates. Usually they are denoted as spherical harmonics Yl,ml

(θ, φ) but their explicit form will not
be needed in the following.
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Clebsch-Gordon coefficients are defined to be the coefficients in the expansion

|jm〉 =
∑

m1,m2

C(j1m1, j2m2|jm)|j1m1〉|j2m2〉 . (1.57)

Range of Values of j and m

Consider ~J = ~J1 + ~J2 ( ~J = ~L+ ~S is exactly similar):

• We have
~J = ~J1 + ~J2 −→ Jz = J1z + J2z , (1.58)

thus for any simultaneous eigenstate |Ψ〉 of J1z and J2z we have

Jz|Ψ〉 = (J1z + J2z)|Ψ〉
−→ m~|Ψ〉 = (m1~ +m2~)|Ψ〉
−→ m = m1 +m2 . (1.59)

Now m = m1 +m2 is the eigenvalue of Jz which therefore runs from −j to +j.

• No matter what j we construct from j1 and j2, we must have

mu ≤ m1u +m2u , (1.60)

where mu~, m1u~ and m2u~ are the maximal eigenvalues of Jz, J1z and J2z, respec-
tively. Since these maximal eigenvalues are just j~, j1~ and j2~, we must have

j ≤ j1 + j2 . (1.61)

• Suppose j1 > j2, then (without proof) mu ≥ m1u −m2u,

⇒ j ≥ j1 − j2 . (1.62)

Similarly, if j2 > j1,
⇒ j ≥ j2 − j1 . (1.63)

In general:
j ≥ |j1 − j2| (1.64)

Thus, the possible values of j that can be constructed from j1 and j2 are

j = |j1 − j2|, |j1 − j2|+ 1, . . . , j1 + j2 − 1, j1 + j2 . (1.65)

This is also known as the triangle condition.
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Explicit Construction of Clebsch-Gordon Coefficients

j1 = 1
2
, j2 = 1

We shall need to know J−|j,m〉 where J± = Jx ± iJy are the familiar raising and

lowering operators. Note that they are the adjoint operators of each other, i.e. J†+ = J−
and J†− = J+ and obey J+J− = ~J2 − J2

z + ~Jz.

J−|j,m〉 has eigenvalue Jz = (m− 1)~, thus J−|j,m〉 ∝ |j,m− 1〉.

The constant of proportionality can be determined (without proof) with the result

J−|j,m〉 =
√

(j −m+ 1)(j +m)~|j,m− 1〉 . (1.66)

For the case j1 = 1
2
, j2 = 1, the possible values of j are 1

2
and 3

2
. (Recall j =

|j1 − j2|, . . . , j1 + j2 − 1, j1 + j2.)

Begin by constructing the state with maximum value of j and maximum value of m,
i.e. |j = 3

2
,m = 3

2
〉.

Since m = m1 + m2 and m1 = ±1
2

and m2 = −1, 0,+1, there is only one way to get
m = 3

2
, namely 3

2
= 1

2
+ 1. Thus,

|j =
3

2
,m =

3

2
〉 = |j1 =

1

2
,m1 =

1

2
〉|j2 = 1,m2 = 1〉 . (1.67)

We can now use the lowering operator J− to construct states with the same value for
j but smaller values of m.

~J = ~J1 + ~J2

⇒ J− = (J1)− + (J2)− . (1.68)

From now on we will take natural units with ~ = 1. Apply eqn. (1.68) to eqn. (1.67).
The left hand side gives

J−|j =
3

2
,m =

3

2
〉 =

√
(3/2− 3/2 + 1)(3/2 + 3/2)|j =

3

2
,m =

1

2
〉 =
√

3|j =
3

2
,m =

1

2
〉 ,

(1.69)
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whereas the right hand side gives

J−|j =
3

2
,m =

3

2
〉 = ((J1)− + (J2)−)|j1 =

1

2
,m1 =

1

2
〉|j2 = 1,m2 = 1〉

= ((J1)−|j1 =
1

2
,m1 =

1

2
〉)|j2 = 1,m2 = 1〉+

|j1 =
1

2
,m1 =

1

2
〉((J2)−|j2 = 1,m2 = 1〉)

=
√

(1/2− 1/2 + 1)(1/2 + 1/2)|j1 =
1

2
,m1 = −1

2
〉|j2 = 1,m2 = 1〉+√

(1− 1 + 1)(1 + 1)|j1 =
1

2
,m1 =

1

2
〉|j2 = 1,m2 = 0〉 , (1.70)

thus,

J−|j =
3

2
,m =

3

2
〉 = ((J1)− + (J2)−)|j1 =

1

2
,m1 =

1

2
〉|j2 = 1,m2 = 1〉

= |j1 =
1

2
,m1 = −1

2
〉|j2 = 1,m2 = 1〉+

√
2|j1 =

1

2
,m1 =

1

2
〉|j2 = 1,m2 = 0〉 . (1.71)

Comparing left and right hand side we obtain,

|j =
3

2
,m =

1

2
〉 =

1√
3
|j1 =

1

2
,m1 = −1

2
〉|j2 = 1,m2 = 1〉+

√
2√
3
|j1 =

1

2
,m1 =

1

2
〉|j2 = 1,m2 = 0〉 . (1.72)

Now we can apply J− again to this state, and after a similar calculation as before we
obtain

|j =
3

2
,m = −1

2
〉 =

√
2√
3
|j1 =

1

2
,m1 = −1

2
〉|j2 = 1,m2 = 0〉+√

1

3
|j1 =

1

2
,m1 =

1

2
〉|j2 = 1,m2 = −1〉 . (1.73)

Finally we can apply J− a third (and last) time to obtain

|j =
3

2
,m = −3

2
〉 = |j1 =

1

2
,m1 = −1

2
〉|j2 = 1,m2 = −1〉 (1.74)

We have now constructed all j = 3
2

states. Acting with J− again gives zero and terminates
the procedure, which is consistent with the fact that m = −5/2 would be outside of the
allowed range.
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How can we obtain the j = 1
2

states?

Start from the state with j = 1
2

and the maximum value of m (for that j) i.e. |j =
1
2
,m = 1

2
〉. This state has the same value of m as |j = 3

2
,m = 1

2
〉 and must be a linear

combination of the same |j1,m1〉|j2,m2〉 states. However, because it has different value of
j it must be orthogonal to |j = 3

2
,m = 1

2
〉. (Distinct eigenvalues of a Hermitian Operator

have orthogonal eigenfunctions.)

Write,

|j =
1

2
,m =

1

2
〉 = c1|j1 =

1

2
,m1 = −1

2
〉|j2 = 1,m2 = 1〉+

c2|j1 =
1

2
,m1 =

1

2
〉|j2 = 1,m2 = 0〉 . (1.75)

Orthogonality to |j = 3
2
,m = 1

2
〉 implies

〈j =
3

2
,m =

1

2
|j =

1

2
,m =

1

2
〉 = 0 , (1.76)

hence,

c1√
3
〈j1 =

1

2
,m1 = −1

2
|j1 =

1

2
,m1 = −1

2
〉〈j2 = 1,m2 = 1|j2 = 1,m2 = 1〉+

c2
√

2√
3
〈j1 =

1

2
,m1 =

1

2
|j1 =

1

2
,m1 =

1

2
〉〈j2 = 1,m2 = 0|j2 = 1,m2 = 0〉+

c2√
3
〈j1 =

1

2
,m1 = −1

2
|j1 =

1

2
,m1 =

1

2
〉〈j2 = 1,m2 = 1|j2 = 1,m2 = 0〉+

c1
√

2√
3
〈j1 =

1

2
,m1 =

1

2
|j1 =

1

2
,m1 = −1

2
〉〈j2 = 1,m2 = 0|j2 = 1,m2 = 1〉

= 0 . (1.77)

Due to ”orthonormality” of the eigenstates, the third and fourth line of this equation
vanish and from the rest we get

c1√
3

+

√
2

3
c2 = 0⇒ c1 = −

√
2c2 . (1.78)

Furthermore, the state must be normalized

⇒ 〈j =
1

2
,m =

1

2
|j =

1

2
,m =

1

2
〉 = 1 (1.79)

hence,
⇒ |c1|2 + |c2|2 = 1 . (1.80)
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Take c1 and c2 real5, then

2c22 + c22 = 3c22 = 1

⇒ c2 =
1√
3
⇒ c1 = −

√
2

3
, (1.81)

so

|j =
1

2
,m =

1

2
〉 = −

√
2

3
|j1 =

1

2
,m1 = −1

2
〉|j2 = 1,m2 = 1〉

+
1√
3
|j1 =

1

2
,m1 =

1

2
〉|j2 = 1,m2 = 0〉 . (1.82)

Using again the J− operator we can also obtain the state |j = 1
2
,m = −1

2
〉 with the

result

|j =
1

2
,m = −1

2
〉 =

√
2

3
|j1 =

1

2
,m1 =

1

2
〉|j2 = 1,m2 = −1〉

− 1√
3
|j1 =

1

2
,m1 = −1

2
〉|j2 = 1,m2 = 0〉 . (1.83)

1.5 The O(4) Symmetry of the Hydrogen Atom

For the Hydrogen atom, ignoring small terms,

Ĥ = − ~2

2m
~∇2 + V (|~x|) (1.84)

with V (|~x|) = − e2

4πε0|~x| . As shown in a previous Section, the Rotational Invariance of Ĥ
means that

[~̂L, Ĥ] = 0 (1.85)

and hence orbital AM is a conserved quantity. (Remember L̂± = L̂x ± iL̂y.)

If we consider a state |l,ml〉 with energy E, then

Ĥ
(
L̂±

)
|l,ml〉 = L̂±Ĥ|l,ml〉

= L̂±E|l,ml〉
= EL̂±|l,ml〉 . (1.86)

Thus, L̂±|l,ml〉 ∝ |l,ml ± 1〉 also has energy E. Consequently, all 2l + 1 states with

ml = −l,−l + 1, . . . , l − 1, l, in an AM multiplet with eigenvalue l(l + 1)~2 of ~̂L
2

, are

5This fixes an irrelevant overall phase factor.
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degenerate in energy. This degeneracy is a manifestation of the Rotational Symmetry of
the Hydrogen atom.

It is known that for 1
1H, not only are all the states with the same AM Quantum Number

l degenerate in energy, but also are all the states with l = 0, 1, . . . , n− 1 corresponding to
the Principle Quantum Number n (the proof can be found in standard QM books). We
want to show here that this is a consequence of a larger symmetry group that includes
Rotational invariance.

In classical physics it can be shown that for a central potential V (|~x|) not only is

~L = ~x× ~p , (1.87)

a constant of motion, but so also is the Lenz vector (in units where me = 1)

~M =
1√
−8E

(
~L× ~x− ~x× ~L+

e2

2πε0

~x

|~x|
.

)
(1.88)

Correspondingly, in QM both

~̂L = ~̂x× ~̂p , (1.89)

and

~̂M =
1√
−8Ĥ

(
~̂L× ~̂x− ~̂x× ~̂L+

e2

2πε0

~̂x

|~x|
,

)
(1.90)

commute with Ĥ. If we define the linear combinations

~̂I =
1

2
(~̂L+ ~̂M) and ~̂K =

1

2
(~̂L− ~̂M) (1.91)

it can be shown that ~̂I and ~̂K commute with each other and they behave like AM operators
i.e.

[Îx, Îy] = iÎz , [K̂x, K̂y] = iK̂z , plus cyclic permutations (1.92)

with ~ = 1. This is referred to as the O(4) or SU(2)× SU(2) algebra. With some effort
it can be shown that the Hamiltonian can be written in the following simple form

Ĥ = −1

4

1

~̂I
2

+ ~̂K
2

+ 1
2

(
e2

4πε0

)2

(1.93)

Because ~̂I and ~̂K each obey the AM algebra, the eigenvalues of ~̂I
2

and ~̂K
2

are of the form
i(i+ 1) and k(k + 1) with i and k integers (with ~ = 1).

Thus the energy levels of the hydrogen atom are

E(i, k) = −1

4

(
e2

4πε0

)2(
i(i+ 1) + k(k + 1) +

1

2

)−1

. (1.94)
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These energy levels have degeneracy (2i+ 1)(2k + 1).

Because of the properties of the triple scalar product ~a · (~b× ~c) we have

~̂L · ~̂M = 0 , (1.95)

thus,

~̂I
2

= ~̂K
2

=
1

4

(
~̂L

2

+ ~̂M
2
)

(1.96)

and we must have i = k. If we write n = 2i+ 1 = 2k + 1:

⇒ i(i+ 1) =
n2 − 1

4
(1.97)

Then the energy levels are

En = −1

4

(
e2

4πε0

)2(
n2 − 1

4
+
n2 − 1

4
+

1

2

)−1

= − 1

2n2

(
e2

4πε0

)2

. (1.98)

As expected having set me = 1 and ~ = 1 with Degeneracy n2.

Moreover, because ~̂L = ~̂I+ ~̂K and both ~̂I and ~̂K both behave like AM operators, using
the rules for adding AM the possible values of l are l = i+k, i+k−1, . . . , |i−k|+1, |i−k|.
Setting i = k = (n− 1)/2, we see that l runs from 0 to n− 1, as required.

The Degeneracy is also the Expected Degeneracy because we have degenerate states
with l = 0, 1, . . . , n− 1 and for each l, ml = −l, . . . , l. Thus there are

n−1∑
l=0

(2l + 1) = n2 (1.99)

degenerate states for the principle quantum number n.

2 Relativistic Quantum Mechanics

2.1 Four Vector Formalism

Any point of space-time is described by xµ, µ = 0, 1, 2, 3 with x0 = ct, x1 = x, x2 = y and
x3 = z. Any mathematical object aµ is called a four-vector if it transforms in the same
fashion as xµ under Lorentz transformations (LT’s).
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If aµ and bµ are four-vectors

a · b ≡ a0b0 − a1b1 − a2b2 − a3b3 (2.1)

is a scalar (invariant) under LT’s. It has the same value for all observers just like

(x0)2 − (x1)2 − (x2)2 − (x3)2 = c2t2 − x2 − y2 − z2 (2.2)

An important four-vector is the four-momentum

pµ ≡
(
E

c
, px, py, pz

)
≡
(
E

c
, ~p

)
(2.3)

where ~p is the 3-momentum. The corresponding Lorentz invariant (scalar) quantity is

p2 ≡ pµpµ ≡ (p0)2 − (p1)2 − (p2)2 − (p3)2 =
E2

c2
− ~p2 = m2c2

⇒ E2 = ~p2c2 +m2c4 . (2.4)

In QM the corresponding hermitian operators are

p̂µ =

(
i~
c

∂

∂t
,−i~ ∂

∂x
,−i~ ∂

∂y
,−i~ ∂

∂z

)
≡

(
i~
c

∂

∂t
,−i~~∇

)
⇒ p̂µ =

(
i~

∂

∂x0
,−i~~∇

)
. (2.5)

If we define the differential operator 4-vectors, ∇µ =
(

∂
∂x0 ,−~∇

)
=
(

1
c

∂
∂t
,−~∇

)
and

∇µ =
(

∂
∂x0 , ~∇

)
=
(

1
c

∂
∂t
, ~∇
)
, then the 4-momentum operator is

p̂µ = i~∇µ , (2.6)

and the Lorentz invariant (scalar) constructed from ∇µ is

� ≡ ∇ · ∇ =
1

c2
∂2

∂t2
− ~∇2 =

1

c2
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
. (2.7)

2.2 The Klein-Gordon Equation

In non-relativistic QM, the free Hamiltonian H = E = ~p2

2m
is quantised by the substitution

H → i~
∂

∂t
, ~p→ −i~~∇ (2.8)
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to give the Schrödinger equation

i~
∂Ψ

∂t
= − ~2

2m
~∇2Ψ . (2.9)

A relativistic free particle has Hamiltonian

H = E =
√
~p2c2 +m2c4 (2.10)

and hence the same, naive substitution gives

i~
∂Ψ

∂t
=

√
m2c4 − ~2c2~∇2Ψ . (2.11)

But what to do about the square root of the operator? One interpretation is to make a
series expansion, but then we get a Hamiltonian with derivatives of arbitrarily high order.

A more sensible route is to start from H2 = ~p2c2 +m2c4 to get

−~2 ∂
2

∂t2
Ψ =

(
−~2c2~∇2 +m2c4

)
Ψ

⇒
(

1

c2
∂2

∂t2
− ~∇2

)
Ψ +

(mc
~

)2

Ψ = 0

⇒
(

� +
(mc

~

)2
)

Ψ = 0 (2.12)

By analogy with the Schrödinger equation it is possible to derive a continuity equation
for the Klein-Gordon (KG) equation

∂ρ

∂t
+ ~∇ · ~J = 0 (2.13)

where ρ is the probability density and ~J is the probability current.6

Derivation: Subtracting the following two equations

Ψ∗
(

� +
(mc

~

)2
)

Ψ = 0

Ψ

(
� +

(mc
~

)2
)

Ψ∗ = 0 (2.14)

gives
Ψ∗∇ · ∇Ψ−Ψ∇ · ∇Ψ∗ . (2.15)

6Integrating the probability density over a volume V bounded by the surface S we find
∫

V
∂ρ
∂t d3x =

d
dt

∫
V

ρd3x = −
∫

V
~∇ ·~jd3x = −

∫
S
~j · d~S. This implies that probability cannot be created or destroyed;

it can only flow from one point to another.
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Furthermore, this implies
∇ · (Ψ∗∇Ψ−Ψ∇Ψ∗) = 0

⇒ ∂

∂t

(
1

c2
(Ψ∗∂tΨ−Ψ∂tΨ

∗)

)
− ~∇ ·

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
= 0 . (2.16)

After multiplying through by ic2, in order to make ρ real, we can write this as desired as
a continuity equation with

ρ = i (Ψ∗∂tΨ−Ψ∂tΨ
∗) and ~J = −ic2

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
. (2.17)

Now because of the negative sign between the two terms in ρ, the probability density can
both take positive and negative values (in contrast to non-relativistic QM where ρ = |Ψ|2
is positive definite)! This is an absurd and nonsensical result for a probability density!!

Junk the KG equation for the moment and try harder. Schrödinger was the first
to write down this relativistic wave equation, but discarded it for a different reason; the
spectrum is not bounded from below. This was the historical route. See later for a rebirth
of the KG equation thanks to Feynman.

2.3 The Dirac Equation

Let us go back to our starting point

ĤΨ = i~
∂Ψ

∂t
(2.18)

and try to give a meaning to the square root in

Ĥ =

√
m2c4 + ~̂pc2 =

√
m2c4 − ~2c2~∇2 . (2.19)

Since the equation is linear in ∂
∂t

, Lorentz covariance suggests it should be linear also
in the ∂

∂xi , i = 1, 2, 3.

So we write

Ĥ = c~α · ~̂p+ βmc2

= −i~c~α · ~∇+ βmc2 , (2.20)

where αi and β are coefficients to be determined. More explicitly this equation can be
written

Ĥ = −i~c
(
α1 ∂

∂x1
+ α2 ∂

∂x2
+ α3 ∂

∂x3

)
+ βmc2 . (2.21)
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Now we determine the coefficients αi and β by requiring that this linear operator ”squares”
to the KG operator

Ĥ2 = −~2c2~∇2 +m2c4 . (2.22)

We find

Ĥ2 = −~2c2
(

(α1)2 ∂2

∂(x1)2
+ (α2)2 ∂2

∂(x2)2
+ (α3)2 ∂2

∂(x3)2

)
+ β2m2c4

−i~mc3
(

(α1β + βα1)
∂

∂x1
+ . . .

)
−~2c2

(
(α1α2 + α2α1)

∂2

∂x1∂x2
+ . . .

)
. (2.23)

Thus we need to solve

(αi)2 = I , i = 1, 2, 3

αiαj + αjαi = 0 , i 6= j

β2 = I
αiβ + βαi = 0 , i = 1, 2, 3 , (2.24)

where I denotes a unit matrix (if a subscript is added it denotes the dimensionality, e.g.
I2 denotes a 2× 2 unit matrix).

It is obviously NOT possible to solve those equations if the coefficients are simply
complex numbers. So let us assume that they are N×N matrices. With some (guess)work
it can be shown that the smallest value of N for which eq. (2.24) can be solved is N = 4.
This implies that the Dirac wave function is a 4-component column vector

Ψ(x) =


Ψ1(x)
Ψ2(x)
Ψ3(x)
Ψ4(x)

 (2.25)

where x ≡ (x0, ~x) and the Dirac equation becomes a matrix equation

i~
∂Ψ

∂t
= ĤΨ = (c~α · ~̂p+ βmc2)Ψ = (−i~c~α · ~∇+ βmc2)Ψ . (2.26)

This is a set of 4 first order linear differential equations to determine Ψ1, . . . ,Ψ4.

2.4 Representation of the Dirac Matrices

A particular set of solutions of (2.24) for the 4× 4 matrices αi , β can be written with the
help of the 2× 2 Pauli matrices σi , i = 1, 2, 3,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2.27)
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which obey the following identities(
σi
)2

= I2 , i = 1, 2, 3

σiσj + σjσi = 0 , i 6= j . (2.28)

We may satisfy the first two lines in eq. (2.24) by taking αi to be the 4× 4 matrices

αi =

(
0 σi

σi 0

)
, i = 1, 2, 3 . (2.29)

Now we may satisfy the remaining two lines in eq. (2.24) by taking

β =

(
I2 0
0 −I2

)
. (2.30)

Because the σi are Hermitian, so are the αi and β, i.e.

(αi)† = αi , β† = β . (2.31)

(† ↔ complex conjugate transposed)

2.5 Probability Density for the Dirac Equation

The Dirac equation is given by

i~
∂Ψ

∂t
= −i~~α · ~∇Ψ +mc2βΨ (2.32)

and its Hermitian conjugate is

−i~∂Ψ†

∂t
= i~~∇Ψ† · ~α+mc2Ψ†β . (2.33)

(Recall that αi and β are hermitian and (AB)† = B†A†.)

Now take Ψ†×(Dirac eqn.) and (Hermitian conjugate eqn.)×Ψ and subtract the two
to obtain:

i~
(

Ψ†∂Ψ

∂t
+
∂(Ψ†)

∂t
Ψ

)
= −i~c

(
Ψ†~α · ~∇Ψ + ~∇(Ψ†) · ~αΨ

)
. (2.34)

Dividing this equation by i~ we obtain a Continuity Equation

∂ρ

∂t
+ ~∇ · ~J = 0 (2.35)
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with the positive definite probability density given by

ρ = Ψ†Ψ =
4∑

k=1

Ψ∗
kΨk =

4∑
k=1

|Ψk|2 > 0 , (2.36)

and the probability current
~J = cΨ†~αΨ . (2.37)

2.6 Extreme Non-Relativistic Limit of the Dirac Equation

For a particle at rest (~p = 0) the Dirac equation becomes

i~
∂Ψ

∂t
= βmc2Ψ

⇒ ∂Ψ

∂t
= −imc

2

~
βΨ . (2.38)

Taking β =

(
I2 0
0 −I2

)
the four equations for the components of Ψ turn into

∂Ψ1

∂t
= −imc

2

~
Ψ1

∂Ψ2

∂t
= −imc

2

~
Ψ2

∂Ψ3

∂t
= +i

mc2

~
Ψ3

∂Ψ4

∂t
= +i

mc2

~
Ψ4 (2.39)

⇒ Ψ1 = c1e
−i mc2

~ t e.t.c. (2.40)

where c1 is an arbitrary constant.

Thus the general solution takes the form

Ψ =


c1e

−i mc2

~ t

c2e
−i mc2

~ t

c3e
i mc2

~ t

c4e
i mc2

~ t

 (2.41)

which can be rewritten as

Ψ = e−i mc2

~ t


c1
c2
0
0

+ ei mc2

~ t


0
0
c3
c4

 (2.42)
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By acting with the Hamiltonian operator Ĥ = i~ ∂
∂t

we find that the first term in the
solution (2.42) carries positive energy (+mc2) whereas the second term carries negative
energy (−mc2).

Although we found a positive probability density (contrary to the KG equation) we
find that also the Dirac equation has both positive and negative energy solutions. We
shall later interpret the negative energy part as due to Anti-particles.

2.7 Spin of the Dirac Particles

The (free) Dirac equation is

i~∂tΨ = ĤΨ with Ĥ = c~α · ~̂p+ βmc2 (2.43)

with ~̂p = −i~~∇.

Consider the total angular momentum operator

~J = ~L+ ~S = ~x× ~̂p+
~
2
~Σ where ~Σ =

(
~σ 0
0 ~σ

)
(2.44)

Using the Uncertainty Principle

[xi, p̂j] = i~δij , (2.45)

it can be shown with some effort that

[Ĥ, ~S] = i~c(~α× ~̂p) (2.46)

and
[Ĥ, ~L] = −i~c(~α× ~̂p) , (2.47)

thus, [Ĥ, ~̂J ]=0. So ~J is a conserved quantity which we interpret as the total angular
momentum.

The 3-component of Spin, Sz, is

S3 =
~
2
Σ3 (2.48)

is the matrix ~
2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 which has eigenvalues ~
2
, −~

2
, ~

2
and −~

2
.

⇒ we are describing spin 1
2

particles (and anti-particles).
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2.8 The Covariant Form of the Dirac Equation

Multiply the Dirac equation

i~
∂Ψ

∂t
= −i~c

3∑
i=1

αi ∂Ψ

∂xi
+ βmc2Ψ (2.49)

with β
c

to obtain

i~

(
β
∂Ψ

∂(ct)
+

3∑
i=1

βαi ∂Ψ

∂xi

)
= mcΨ . (2.50)

Next define the matrices
γ0 = β , γi = βαi , i = 1, 2, 3 (2.51)

which are also called Gamma-Matrices and allow us to rewrite the Dirac equation as

i~

(
γ0 ∂Ψ

∂x0
+

3∑
i=1

γi ∂Ψ

∂xi

)
Ψ = mcΨ (2.52)

→ i~γ · ∇Ψ = mcΨ (2.53)

where ∇µ ≡
(

∂
∂x0 ,−~∇

)
as defined in section 2.1 and

γµ ≡
(
γ0, ~γ

)
=
(
γ0, γ1, γ2, γ3

)
, (2.54)

which makes the Dirac equation now look Lorentz covariant.

Dirac or Feynman Slash Notation

For any 4-vector Aµ, we define /A ≡ γ ·A = γ0A0 − ~γ · ~A. Then, the Dirac equation is

i~/∇Ψ = mcΨ (2.55)

or
/̂pΨ = mcΨ (2.56)

⇒ (/̂p−mc) Ψ = 0 (2.57)

where p̂µ = i~∇µ.

2.9 Properties of the γ-Matrices

Using the properties of the αi and β we may show that the gamma-matrices obey the
following anti-commutation identity

{γµ, γν} ≡ γµγν + γνγµ = 2gµνI4 , (2.58)
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with gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

.

In particular, (γ0)2 = I4, (γi)2 = −I4, i = 1, 2, 3.

Furthermore (γ0) = β† = β i.e. γ0 is Hermitian, whereas (γi)† = (βαi)† = (αi)†β† =
αiβ = −βαi = −γi i.e. γi is anti-Hermitian, i = 1, 2, 3.

Using the explicit matrices αi and β of Section 2.4 we find

γ0 =

(
I2 0
0 −I2

)
, γi =

(
0 σi

−σi 0

)
. (2.59)

2.10 Digression on Contravariant and Covariant Vectors

A 4-vector, aµ, may be regarded as a contravariant vector (under LT’s) and

gµν ≡ gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 as a Metric Tensor. Then, aµ ≡
∑3

ν=0 gµνa
ν ≡ gµνa

ν is

a covariant vector. Summation over repeated indices is understood (Einstein summation
convention), where one of the indices always is an upper (contravariant) index and the
other is a lower (covariant) index.

We may write a · b = gµνa
µbν = aµbµ. Alternatively, since gµν = gνµ we can write

a · b = gµνa
µbν = gνµa

µbν = aνb
ν

→ a · b = aµb
µ

In this notation, ∇ · ∇ = ∇µ∇µ = ∇µ∇µ, the KG equation is(
∇µ∇µ +

(mc
~

)2
)
φ = 0 , (2.60)

and the Dirac equation is

i~γµ∇µΨ = mcΨ or γµp̂µΨ = mcΨ . (2.61)
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2.11 Plane Wave Solutions of the Dirac Equation

From now on we will work in natural units ~ = c = 1. We look for plane wave solutions
of the Dirac equation of the form

Ψ = e∓ip·x
(
φ
χ

)
(2.62)

where φ are the upper two components and χ the lower two components of Ψ and p · x =
Et− ~p · ~x, with E > 0.

The factor e−ip·x gives solutions with positive energy E and momentum ~p, and the
factor e+ip·x gives solutions with negative energy −E and momentum −~p. Substituting
back into the Dirac equation (

−i~α · ~∇+ βm
)

Ψ = i
∂Ψ

∂t
, (2.63)

and using ∂tΨ = ∓iEΨ and ∂xΨ = ±ipxΨ e.t.c., we obtain

(−i(±i)~α · ~p+ βm)Ψ = i(∓iE)Ψ

→ (±~α · ~p+ βm)Ψ = ±EΨ . (2.64)

If we use the standard representation for the αi and β from Section 2.4 we obtain(
mI ±~σ · ~p
±~σ · ~p −mI

)(
φ
χ

)
= ±E

(
φ
χ

)
(2.65)

which gives the coupled set of equations

(m∓ E)φ± ~σ · ~pχ = 0

±~σ · ~pφ− (m± E)χ = 0 . (2.66)

We will construct the solutions in such a way that they have a straighforward ~p = 0 limit.

Positive Energy Solutions

(m− E)φ+ ~σ · ~pχ = 0

~σ · ~pφ− (m+ E)χ = 0 . (2.67)

For ~p = 0, E = m and χ = 0 (in agreement with Section 2.6).

For ~p 6= 0 it is convenient to solve for χ in terms of φ using the second equation in
(2.67), i.e.

χ =
~σ · ~p

(E +m)
φ (2.68)
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then,

Ψ = e−ip·x
(

φ
~σ·~p

(E+m)
φ

)
. (2.69)

Note that the first equation in (2.67) only gives the on-(mass)shell condition E2 = ~p2+m2.

We can write φ in terms of φ1 =

(
1
0

)
and φ2 =

(
0
1

)
.

There are thus two independent positive energy solutions

Ψ = e−ip·xU(p, s) , s = 1, 2 (2.70)

where

U(p, s) =
√
E +m

(
φs

~σ·~p
(E+m)

φs

)
(2.71)

is a positive energy Dirac spinor. In the last expression a convenient normalization factor
has been introduced.

It can be checked that the first equation in (2.67) is automatically satisfied by using
the identity (~σ · ~p)2 = ~p2I2.

Negative Energy Solutions

(m+ E)φ− ~σ · ~pχ = 0

−~σ · ~pφ− (m− E)χ = 0 . (2.72)

For ~p = 0, E = m and φ = 0 (in agreement with Section 2.6).

For ~p 6= 0 it is convenient to solve for φ in terms of χ using the first equation in (2.72),
i.e.

φ =
~σ · ~p

(E +m)
χ (2.73)

then,

Ψ = e+ip·x
( ~σ·~p

(E+m)
χ

χ

)
. (2.74)

Note that the second equation in (2.72) only gives the on-(mass)shell condition E2 =
~p2 +m2.

We can write χ in terms of χ1 =

(
0
1

)
and χ2 =

(
1
0

)
.
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There are thus two independent negative energy solutions

Ψ = e+ip·xV (p, s) , s = 1, 2 (2.75)

where

V (p, s) =
√
E +m

( ~σ·~p
(E+m)

χs

χs

)
(2.76)

is a negative energy Dirac spinor. In the last expression a convenient normalization factor
has been introduced.

It can be checked that the second equation in (2.72) is automatically satisfied by using
the identity (~σ · ~p)2 = ~p2I2.

Interpretation

To find the physical interpretation for the four independent solutions we consider the
rest frame ~p = 0. Then:

U(p, 1) =
√

2m

(
φ1

0

)
=
√

2m


1
0
0
0



U(p, 2) =
√

2m

(
φ2

0

)
=
√

2m


0
1
0
0



V (p, 1) =
√

2m

(
0
χ1

)
=
√

2m


0
0
0
1



V (p, 2) =
√

2m

(
0
χ2

)
=
√

2m


0
0
1
0

 (2.77)

Furthermore, for ~p = 0 we have ~L = ~x × ~p = 0 so that the total angular momentum
operator becomes

~J = ~L+ ~S = ~S =
1

2
~Σ

⇒ Sz =

(
1
2
σ3 0
0 1

2
σ3

)
(2.78)

Thus, U(p, 1) and U(p, 2) are positive energy solutions with Sz eigenvalues sz = +1/2
and sz = −1/2 respectively, whereas V (p, 1) and V (p, 2) are negative energy solutions
with Sz eigenvalues sz = −1/2 and sz = +1/2 respectively.
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In general, U and V are the Lorentz boosts of these solutions to a frame where ~p 6= 0.
Interpret the negative energy solutions later.

2.12 Properties of Solutions

Since e−ip·xU(p, s) is a solution of the Dirac equation

(iγ · ∇ −m)(e−p·xU(p, s)) = 0

→
(
iγ0 ∂

∂t
+ i~γ · ~∇−m

)
e−i(Et−~p·~x)U(p, s) = 0

→ (Eγ0 − ~p · ~γ −m)U = 0

→ (p · γ −m)U = 0

⇒ (p/−m)U(p, s) = 0 (2.79)

i.e. U(p, s) obeys the Dirac equations with p̂µ simply replaced by pµ. Similarly, we find

(p/+m)V (p, s) = 0 . (2.80)

We will often make use of the adjoint spinors which are defined as

U(p, s) ≡ U †(p, s)γ0 , V (p, s) ≡ V †(p, s)γ0 . (2.81)

By taking the Hermitian adjoint of the equation obeyed by U and V we find

U(p, s)(p/−m) = 0 , V (p, s)(p/+m) = 0 . (2.82)

One may also check directly (using again (~σ · ~p)2 = ~p2I2) that

U †(p, s)U(p, s) = V †(p, s)V (p, s) = 2E , s = 1, 2 , (2.83)

and
U(p, s)U(p, s) = 2m, V (p, s)V (p, s) = −2m, s = 1, 2 . (2.84)

2.13 Anti-Particles — Hole Theory

Since the Dirac equation has negative energy solutions, why do positive energy electrons
not radiate energy and fall into a negative energy state? Dirac: Negative energy states
are completely filled and the Pauli exclusion principle (which applies to fermions) forbids
the transition. Consequently, the Vacuum is a state with all positive energy states empty
but all negative energy states filled.
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(picture goes here)

If a photon excites a negative energy e− of energy −|E2| into a positive energy e−

of energy |E1|, we observe the production of an e− of mass m, charge −|e| and energy
|E1|, and a Hole in the negative energy sea (Pair production). Note that there is a gap
of 2mc2 between the negative and positive energy states and, hence, the photon energy
hν = |E1| + |E2| must be larger than 2mc2 for this to happen. The hole appears as a
particle of mass m, charge +|e| and energy +|E2|.
⇒ The existence of the Positron (and Anti-particles in general) is predicted!

(picture goes here)

The absence of a spin-up electron of energy −|E| and momentum −~p is equivalent to
the presence of a spin-down positron of energy +|E| and momentum +~p. (Think about
time running backwards or the arrow in a Feynman diagram reversed)

(picture goes here)

Thus, the electron wavefunction eip·xV (p, s) corresponding to energy −E and momen-
tum −~p describes a positron of energy +E and momentum +~p. Also, V (p, 1) and V (p, 2)
which describe spin down and spin up negative energy electrons must describe spin up
and spin down positrons.

2.14 Vacuum Polarization

In general the infinite negative charge of the vacuum produces no effect because the
distribution of charge is homogeneous.

However, consider the effect of a positive energy electron with charge −|e| on the
vacuum. It repels the negative energy electrons and electrically polarises the vacuum.
Thus the physical charge −|e| seen by a test charge at a large distance from the electron
is numerically smaller than the bare charge −|e0|, i.e. |e| < |e0|.

(picture goes here)

However, if the test charge comes very close it will see the bare charge −|e0|. For
S-wave electrons (l = 0) in an atom, the proton sees a charge numerically greater than
the ordinary electric charge |e|. Note that for l > 0 the wavefunction vanishes at the
origin and the proton feels a numerically smaller charge. This effect leads to measurable
shifts of the energy levels of atoms.
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2.15 Charge Conjugation Symmetry C

We construct an operator acting on the Dirac wave function

C : Ψ→ ΨC (2.85)

which turns a positive energy electron wavefunction (e−) into a negative energy wave
function (e+) with the same momentum and spin state. If Ψ = e−ip·xU(p, s) then ΨC =
eip·xV (p, s). The required operation turns out to be

C : Ψ→ ΨC = Cγ0Ψ∗ , (2.86)

where C = iγ2γ0. Useful properties: C† = −C, C2 = −I, C−1 = −C and CγµC = (γµ)T .

A symmetry of a wave equation is an operation on a wave function Ψ→ Ψ′ and on the
space-time coordinates x→ x′ such that Ψ′ obeys the same equation as Ψ, with x replaced
by x′.

Ψ→ ΨC , x→ x′ can be shown to be a symmetry of the Dirac equation as follows:

We say that the Dirac equation is charge conjugation invariant. The Dirac equation
may be written as

(iγµ∇µ −m)Ψ = 0, (2.87)

taking the complex conjugate gives

(−i(γµ)∗∇µ −m)Ψ∗ = 0 . (2.88)

Now multiply from the left with Cγ0

(−iCγ0(γµ)∗∇µ −m)Ψ∗ = 0

→ (iγµ(Cγ0))∇µ −mcγ0)Ψ∗ = 0

→ (iγµ∇µ −m)ΨC = 0 , (2.89)

where we have used the identity Cγ0(γµ)∗ = −γµ(Cγ0). This shows that ΨC obeys the
same equation as Ψ.

2.16 Space Inversion P

The Dirac equation is also invariant under reflection of space coordinates in the origin

P : ~x→ ~x′ = −~x , t→ t′ = t . (2.90)
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The corresponding operation7 on Dirac spinors is

P : Ψ→ Ψ′ = PΨ (2.91)

with P = γ0. It can be checked by direct calculation that PU(~p, s) = U(−~p, s) i.e.
~p→ −~p as expected for space inversion, but the spin state is unchanged. Also PV (~p, s) =
−V (−~p, s). The −1 factor indicates that anti-particles have opposite Parity to particles.

In this case, to check invariance of the Dirac equation, it is necessary to replace ∂x,
∂y and ∂z by −∂x, −∂y and −∂z, as well as replacing Ψ by Ψ′, i.e. Ψ′ obeys the same
equation as Ψ with ∂x, ∂y and ∂z replaced by −∂x, −∂y and −∂z.

2.17 Time Reversal T

The Dirac equation also has a symmetry under time reversal

T : t→ t′ = −t , ~x→ ~x′ = ~x , (2.92)

the appropriate transformation of Ψ is

T : Ψ→ Ψ′ = Tψ∗ (2.93)

with T = −γ1γ3. It can be checked directly that this is the correct transformation by
showing that

TU∗(~p, 1) = +U(−~p, 2) , TV ∗(~p, 1) = −V (−~p, 2) (2.94)

Thus, the transformation changes a solution of the Dirac equation with momentum ~p and
spin up into a solution with momentum −~p and spin down.

This is as expected for time reversal, since ~p = m~v/
√

1− ~v2/c2 and ~L = ~x × ~p, and

thus under time reversal ~p→ −~p and ~L→ −~L and in particular Lz → −Lz. We assume
that this applies to any AM operator, so that in particular Sz → −Sz . In this case, Ψ′

obeys the same equation as Ψ with ∂t replaced by −∂t.

2.18 Dirac Covariants

It is important in the study of the Weak Interactions to know the properties of objects
like ΨγµΨ, Ψγµγ5Ψ, etc, where we introduced

γ5 ≡ iγ0γ1γ2γ3 =

(
0 I
I 0

)
. (2.95)

7Since P also transforms the space time coordinates this operation should be written more properly
as Ψ(t, ~x) → Ψ′(t′, ~x′) = Ψ′(t,−~x) = PΨ(t, ~x). Hence Ψ′(t, ~x) = PΨ(t,−~x); a similar comment applies
to time reversal T .
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We list here the behaviour of some of the Dirac covariants under Lorentz transforma-
tions, P , C:

Covariant LT’s P C
ΨΨ scalar +ΨΨ −ΨΨ

Ψγ5Ψ pseudoscalar −Ψγ5Ψ −Ψγ5Ψ

ΨγµΨ 4-vector +Ψγ0Ψ +ΨγµΨ
−ΨγiΨ

Ψγµγ5Ψ (pseudo) 4-vector −Ψγ0γ5Ψ −Ψγµγ5Ψ
+Ψγiγ5Ψ

(γ5 has the properties {γ5, γ
µ} = 0, γ†5 = γ5)

For example under P the behaviour of the vector current is

ΨγµΨ → Ψ
′
γµΨ′

= (Ψ′)†γ0γµΨ′

= Ψ†(γ0)†γ0γµγ0Ψ

= Ψ†γ0γ0γµγ0Ψ

= Ψγ0γµγ0Ψ (2.96)

Thus,
Ψγ0Ψ→ Ψγ0γ0γ0Ψ = Ψγ0Ψ (2.97)

ΨγiΨ → Ψγ0γiγ0Ψ

= −Ψ(γ0)2γiΨ

= −ΨγiΨ (2.98)

In the Relativistic version of Time Dependent Perturbation Theory (Feynman Dia-
grams) the probability amplitudes for Electromagnetic Scattering of 2 particles via photon
exchange contains a factor

U(p2, s2)γµU(p1, s1)U(p4, s4)γ
µU(p3, s3)

= Uγ0UUγ0U −
3∑

i=1

UγiUUγiU , (2.99)

which is invariant under both P and C because the two negative signs for the UγiU
cancel for space inversion. Thus the Electromagnetic interactions are both space reflection
invariant and charge conjugation invariant.

(picture goes here)
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The corresponding probability amplitude for the Weak Interaction has a factor

U(p2, s2)γµ(I− γ5)U(p1, s1)U(p4, s4)γ
µ(I− γ5)U(p3, s3)

= UγµUUγ
µU + Uγµγ5UUγ

µγ5U

−Uγµγ5UUγ
µU − UγµUUγ

µγ5U . (2.100)

The term

Uγµγ5UUγ
µU

= Uγ0γ5UUγ
0U −

3∑
i=1

Uγiγ5UUγ
iU (2.101)

changes sign under both P and C transformations, because ΨγµΨ and Ψγµγ5Ψ transform
with opposite signs both for µ = 0 and µ = i. Thus, the weak interactions break both
space inversion and charge conjugation invariance. This manifests itself in the angular
dependence of scattering processes (e.g. cos θ changes sign under space inversion: 0 →
π − 0). Note however that the combined action of C and P , CP , is a symmetry of this
interaction.

Note, that in a general theory C, P and T are not preserved, but the combination of
the three transformations CPT is always a symmetry.

2.19 Neutrinos

Some modification of RQM is needed in the physically important case of massless spin-1/2
particles — Neutrinos (with todays experimental evidence of Neutrino oscillations this is
not quite true, nevertheless it is a very good approximation.)

First, define the Helicity of a particle as the component of its AM ~J = ~L+ ~Σ/2 in its
direction of motion. For a Dirac particle,

Helicity = ~J · ~p
|~p|

=
~Σ

2
· ~p
|~p|

(2.102)

because ~L · ~p = (~x× ~p) · ~p = 0.

Experimental observation shows that whereas an e− can have Helicity +1/2 or −1/2,
a Neutrino (which is massless) can only have Helicity −1/2 and an Anti-Neutrino can
only have Helicity +1/2.

Thus, whereas we need four degrees of freedom to describe the 2 spin states of an
electron or positron, we need only 2 degrees of freedom to describe the spin states of the
neutrino and anti-neutrino. We need to discard 2 spin states of the Dirac particle.
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Now we return to the Dirac equation for a positive energy solution of energy E and
momentum ~p. However, we choose a different representation of the Dirac matrices (and
hence a different representation of the gamma-matrices). This does not effect the physics
but makes the proof much easier. It may be checked that

β =

(
0 I
I 0

)
, ~α =

(
~σ 0
0 −~σ

)
(2.103)

also obey the Dirac Algebra (2.24).

For Ψ = e−ip·x
(
φ
χ

)
the Dirac equation reduces to (~α · ~p+ βm)Ψ = EΨ (see Section

2.11), from which we get(
~σ · ~p mI
mI −~σ · ~p

)(
φ
χ

)
= E

(
φ
χ

)
, (2.104)

which gives the coupled equations

~σ · ~pφ+mχ = Eφ

mφ− ~σ · ~pχ = Eχ . (2.105)

Now taking m = 0 for a massless neutrino decouples the two equations,

~σ · ~pφ = Eφ

~σ · ~pχ = −Eχ , (2.106)

and since E = |~p| for m = 0,

~σ · ~p
2|~p|

φ =
1

2
φ

~σ · ~p
2|~p|

χ = −1

2
χ . (2.107)

Thus the upper 2 components of Ψ describe Helicity 1/2, and the lower two describe
helicity −1/2 when Ψ has positive energy. To obtain an appropriate Ψ to describe a
Neutrino we perform a projection that removes the upper 2 components.

This may be achieved by using γ5 = iγ0γ1γ2γ3. With the above choice of ~α and β,

γ0 = β =

(
0 I
I 0

)
, γi = βαi =

(
0 −σi

σi 0

)
(2.108)

and

γ5 = i

(
−σ1σ2σ3 0

0 σ1σ2σ3

)
=

(
I 0
0 −I

)
(2.109)
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If we form 1
2
(I−γ5) =

(
0 0
0 I

)
, then we may use it to project the upper 2 components

and leave the Helicity −1/2 components. Thus,

ΨL ≡
1

2
(I− γ5)Ψ , (2.110)

with Ψ a positive energy spinor, may be used to describe the neutrino.

If instead we start from a negative energy solution Ψ, the from Section 2.11

(−~α · ~p+ βm)Ψ = −EΨ . (2.111)

For Ψ = eip·x
(
φ
χ

)
we then have

(
−~σ · ~p mI
mI ~σ · ~p

)(
φ
χ

)
= −E

(
φ
χ

)
, (2.112)

which gives the coupled equations

−~σ · ~pφ+mχ = −Eφ
mφ+ ~σ · ~pχ = −Eχ . (2.113)

Now taking m = 0 for a massless anti-neutrino

~σ · ~pφ = Eφ

~σ · ~pχ = −Eχ , (2.114)

and since E = |~p| for m = 0,

~σ · ~p
2|~p|

φ =
1

2
φ

~σ · ~p
2|~p|

χ = −1

2
χ . (2.115)

This is the same as for the positive energy solution. Thus, the upper 2 components of Ψ
still describe Helicity +1/2 and the lower 2 components describe Helicity −1/2. To obtain
an appropriate Ψ to describe an Anti-Neutrino with Helicity +1/2 we need a negative
energy state with Helicity −1/2.

Thus, ΨL = 1
2
(I− γ5)Ψ with Ψ a negative energy spinor, may be used to describe the

anti-neutrino with Helicity +1/2.
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2.20 Feynman’s Interpretation of the Klein-Gordon Equation

In Section 1.2 we abandoned the KG equation because the Probability density

ρ = i (φ∗∂tφ− φ∂tφ
∗) (2.116)

could give negative values (we have renamed the wavefuntion Ψ by φ).

It can be checked by direct substitution that the KG equation

(
∂2

∂t2
− ~∇2 +m2)φ = 0 (2.117)

has positive energy solutions

φ = Ne−ip·x = Ne−i(Et−~p·~x) (2.118)

and negative energy solutions

φ = Neip·x = Nei(Et−~p·~x) . (2.119)

The probability density of such solutions is

ρ = |N |2(±2E) . (2.120)

Thus, negative probabilities come from negative energy solutions. These are (as usual)
the problem.

We need an interpretation for the negative energy solutions of the KG equation. Dirac
Hole theory will NOT work for the spin-0 Bosons described by the KG equation, because
they do not obey the Dirac exclusion principle to give a filled negative energy sea.

Feynman gave an alternative way of interpreting negative energy solutions which works
for both bosons and fermions!

The emission/absorption of an anti-particle with 4-momentum pµ is equivalent to the
absorption/emission of a negative energy particle with 4-momentum −pµ.

In Feynman diagrams, which are the rules of calculating scattering and decay am-
plitudes in RQM, when Anti-Particles are involved we draw lines for negative energy
particles propagating backwards in time and use Feynman’s interpretation. E.g. for elec-
tromagnetic Electron-Positron scattering via photon exchange there are two diagrams
that contribute:

(picture goes here)
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2.21 Dirac Equation in an Electromagnetic Field

In classical relativistic mechanics the interaction of a particle carrying charge q in an
external electromagnetic field can be obtained by substituting the momentum as

pµ → pµ + qAµ , (2.121)

where Aµ is the 4-vector potential

Aµ ≡ (A0, ~A) = (φ, ~A) (2.122)

with φ the scalar potential and ~A the vector potential. (Remember: ~E = −~∇φ − ∂t
~A,

~B = ~∇× ~A).

This works also for RQM
p̂µ → p̂µ + qAµ (2.123)

or equivalently
∇µ → ∇µ − iqAµ . (2.124)

The free particle Dirac equation is (iγ · ∇−m)Ψ = 0. Making the above substitution

γ · ∇ → γ · ∇ − iqγ · A (2.125)

the Dirac equation in an electromagnetic field is

(iγ · ∇ −m)Ψ = −qγ · A (2.126)

or
(i∇/−m)Ψ = −qA/ . (2.127)

It is sometimes convenient to write the equation in terms of the Dirac matrices i.e. in
Hamiltonian form. Begin with the equation

(iγ0 ∂

∂t
+ i~γ · ~∇−m)Ψ = −q(A0γ0 − ~A · ~γ)Ψ (2.128)

and multiply from left with γ0 = β. Since (γ0)2 = I and γ0γi = ββαi = αi we obtain

i
∂Ψ

∂t
=
(
(−i~∇+ q ~A) · α+ βm

)
Ψ− qA0Ψ

→ i
∂Ψ

∂t
=

(
α · ~̂Π + βm

)
Ψ− qA0Ψ , (2.129)

where
~̂Π = −i~∇+ q ~A = ~̂p+ q ~A . (2.130)

36



2.22 The Magnetic Moment of the Electron

In the non-relativistic limit the rest mass mc2 is the largest energy in the problem (since
|~v|2 << c2) and we can write for a positive energy solution

Ψ = e−imt

(
φ
χ

)
(2.131)

where φ and χ vary slowly with time and will be called large and small components for
reasons that will become clear in a moment.

Substituting in the Dirac equation (with the Dirac representation for β and αi, which
is more appropriat for studying non-relativistic limits) in an electromagnetic field

me−imt

(
φ
χ

)
+ ie−imt

(
∂tφ
∂tχ

)
= e−imt

(
(−qA0 +m)I ~σ · ~̂Π

~σ · ~̂Π (−qA0 −m)I

)(
φ
χ

)
,

(2.132)
multiplying with e+imt and subtracting the first term on the left hand side from both sides
we obtain (

i∂tφ
i∂tχ

)
=

(
−qA0I ~σ · ~̂Π
~σ · ~̂Π (−qA0 − 2m)I

)(
φ
χ

)
. (2.133)

The lower equtions is

i∂tχ = ~σ · ~̂Πφ− (qA0 + 2m)χ . (2.134)

For χ varying slowly with time and under the assumption 2m >> qA0

χ ∼ ~σ · ~̂Π
2m

φ (2.135)

where ~̂Π = ~̂p+ q ~A. Hence, for momenta and EM fields small compared to the rest mass

χ << φ . (2.136)

Now using the top equation

i∂tφ = −qA0φ+ ~σ · ~̂Πχ , (2.137)

we get, using eqn. (2.135)

⇒ i∂tφ = −qA0φ+
(~σ · ~̂Π)2

2m
φ . (2.138)
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To simplify this further we may use the identity

(~σ · ~a)(~σ ·~b) = ~a ·~bI + i~σ · (~a×~b) , (2.139)

which follows from
σiσj = δijI + iεijkσk (2.140)

where summation over k is understood. The Kronecker delta is defined as δij =

{
1, i = j
0, i 6= j

;

and ε123 = ε231 = ε312 = +1, ε132 = ε213 = ε321 = −1 and otherwise εijk = 0. In terms of
the ε-tensor (

~a×~b
)i

= εijkajbk (2.141)

and, hence,

(~σ · ~̂Π)2φ = (~σ · ~̂Π)(~σ · ~̂Π)φ = ~̂Π · ~̂ΠIφ+ i~σ · (~̂Π× ~̂Π)φ . (2.142)

Now (~ = 1),

(~̂Π× ~̂Π)φ = (~̂p+q ~A)×(~̂p+q ~A)φ = (−i~∇+q ~A)×(−i~∇+q ~A)φ = −(~∇+iq ~A)×(~∇+iq ~A)φ .
(2.143)

The x component of this expression is

−(∂y + iqAy)(∂z + iqAz)φ+ (∂z + iqAz)(∂y + iqAy)φ

= − [∂y(iqAzφ)− ∂z(iqAyφ) + iqAy∂zφ− iqAz∂yφ]

= −iq[∂yAz − ∂zAy]φ

= −iqBxφ , (2.144)

and hence

(~̂Π× ~̂Π)φ = −iq ~Bφ . (2.145)

Now

(~σ · ~̂Π)2φ = ~̂Π · ~̂Πφ+ q~σ · ~Bφ , (2.146)

hence, the non-relativistic limit of the Dirac equation in an EM field (also called Pauli
equation) may be written as

i
∂φ

∂t
=

(
−qA0 +

(~̂p+ q ~A)2

2m
+
q~σ · ~B
2m

)
φ (2.147)

or writing ~S = ~
2
~σ for the spin of the electron (setting ~ = 1) we obtain

i
∂φ

∂t
=

(
−qA0 +

(~̂p+ q ~A)2

2m
+
q~S · ~B
m

)
φ (2.148)

where φ is a two-component wave function for the non-relativistic spin-1/2 particle.
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Comparing with the usual form of the non-rel. Schrödinger equation

i
∂Ψ

∂t
=

(
− 1

2m
~∇2 + V

)
Ψ , (2.149)

we can interpret the last term in eqn. (2.148) as a potential energy −~µspin · ~B due to
the spin magnetic moment of the electron in an external magnetic field. Thus the spin
magnetic moment is

~µspin = −q
~S

m
≡ −g q

~S

2m
(2.150)

where g is the so-called gyromagnetic ration. Hence, the Dirac equation predicts g = 2
whereas classically we would expect g = 1. This prediction was confirmed experimentally
and is one of the spectacular successes of the Dirac equation! Including radiative correction
from Quantum Electrodynamics (QED) yields a more precise value of g = 2(1.0011 . . .)
which agrees up to nine digits after the dot with experiment!

2.23 Hydrogen Atom Spectrum

In the presence of an electrostatic potential V (r) the Dirac equation becomes

ĤΨ = (~α · ~̂p+ βm+ V (r))Ψ = i
∂Ψ

∂t
, (2.151)

for positive energy solutions with energy eigenvalue E > 0 we make an separation ansatz

Ψ = e−iEtΨ0(r, θ, φ) (2.152)

so that
i∂tΨ = EΨ (2.153)

which gives a time independent equation

(~α · ~̂p+ βm+ V (r))Ψ = EΨ . (2.154)

For a Hydrogen-like atom we take

V (r) = −Zα
r

, α =
e2

4π
. (2.155)

The total AM operator ~J commutes with (~α · ~̂p+βm) as in section 2.7. Also ~J commutes
with V (r) because V (r) is independent of Spin and as in section 1.3, orbital AM operator
~L commutes with V (r). Thus [ ~J, Ĥ] = 0.

The problem can be solved using simultaneous eigenstates ψl
j,m of ~J2, Jz and the parity

operator P (which takes ~x→ −~x). The corresponding quantum numbers are j(j + 1), m
and (−1)l, where l is orbital angular momentum.
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For the spin-1/2 electron, the allowed values of j are j = l ± 1/2. The gory details of
the calculation can be found in section 2.3.2 of [4], with the result for the energy levels

En,j = me

[
1− 1

2

Z2α2

n2
− 1

2

Z4α4

n3

(
1

j + 1/2
− 3

4n

)
+O((Zα)6)

]
(2.156)

This result predicts correctly the splitting of the energy levels with the same princi-
ple quantum number n but different j (Fine Splitting); It does not predict the observed
splitting of energy levels with the same n and j but different parity (−1)l (Lamb Shift).
This requires the quantization of the EM field Aµand, hence, the use of Quantum Elec-
trodynamics (QED). Other important quantum corrections are discussed in [4].

(draw the energy levels with n = 1 and n = 2)

3 Propagator Theory

3.1 Introduction

We need a method for calculating the rates of physical processes such as scattering of
particles or the decay of a particle into other particles in RQM. In non-relativistic QM
this is done using time-dependent perturbation theory. We shall develope an alternative
approach that can be generalized to RQM → Porpagator Theory. This is equivalent to a
complete solution of the Schrödinger equation.

3.2 Non-Relativistic Propagators

The starting point is the Huygen’s Principle: In Optics this says that the propagation of
a light wave can be understood by assuming that each point on the wave front acts as
a source of a secondary wave which spreads out spherically. This idea can be applied to
QM, since the Schrödinger equation is a linear differential equation and, hence, any linear
combination of known solutions is also a solution.

If the wave function ψ(t, ~x) is known at some time t, then for some later time t′ > t
the wave function ψ(t′, ~x′) may be found by treating each point of space at time t as a
source of a spherical wave. At the time t′, the amplitude of the wave which propagated
from ~x at time t to ~x′ at time t′ will be proportional to ψ(t, ~x). We write the contribution
to ψ(t′, ~x′) as

iG(t′, ~x′; t, ~x)ψ(t, ~x) (3.1)
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and summing over all contributions gives

ψ(t′, ~x′) = i

∫
d3xG(t′, ~x′; t, ~x)ψ(t, ~x) . (3.2)

G(t′, ~x′; t, ~x) is referred to as the Green function or Propagator, and the knowledge of
G(t′, ~x′; t, ~x) will enable us to construct the wave function at a later time from the wave
function at an earlier time.

3.3 Construction of the Interacting Propagator from the Free
Propagator

We construct the propagator for a particle that interacts with a potential an arbitrary
number of times from the propagator of a freely moving particle. Later we shall construct
the free propagator which we will denote by G0(t

′, ~x′; t, ~x) and we will use at times x and
x′ as shorthand for (t, ~x) and (t′, ~x′).

Suppose that an interaction potential is turned on at time t1, for a short time interval
∆t1. For t < t1, the wave function is the free particle wave function that we denote by
φ(t, ~x). It obeys the equation

φ(t′, ~x′) = i

∫
d3xG0(t

′, ~x′; t, ~x)φ(t, ~x) . (3.3)

For t > t1 + ∆t1, the wave function ψ differs from φ by an amount ∆φ induced by the
potential V . ∆φ can be calculated using the Schrödinger equation

(a) i
∂φ

∂t
= H0φ ,

(b) i
∂ψ

∂t
= (H0 + V )ψ , (3.4)

where H0 denotes the free Hamiltonian, and (a) and (b) are the Schrödinger equation
without and with interaction, respectively.

Integrating (a) and (b) from t1 to t1 + ∆t1, at ~x = ~x1, yields

(a) i (φ(t1 + ∆t1, ~x1)− φ(t1, ~x1)) = H0φ(t1, ~x1)∆t1 ,

(b) i (ψ(t1 + ∆t1, ~x1)− ψ(t1, ~x1)) = H0ψ(t1, ~x1)∆t1 + V ψ(t1, ~x1)∆t1 . (3.5)

Since at time t1 the interaction has not occured yet ψ(t1, ~x1) = φ(t1, ~x1), and subtracting
(b)-(a) gives, provided that ∆t1 is small:

i (ψ(t1 + ∆t1, ~x1)− φ(t1 + ∆t1, ~x1)) = V (t1, ~x1)ψ(t1, ~x1)∆t1

→ i∆φ(t1, ~x1) = V (t1, ~x1)φ(t1, ~x1)∆t1

→ ∆φ(t1, ~x1) = −iV (t1, ~x1)φ(t1, ~x1)∆t1 (3.6)
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For t > t1 + ∆t1, there is no interaction and so ∆φ evolves like a free particle wave
function, so that

∆φ(t′, ~x′) = i

∫
d3x1G0(t

′, ~x′; t1, ~x1)∆φ(t1, ~x1)

→ ∆φ(t′, ~x′) =

∫
d3x1G0(t

′, ~x′; t1, ~x1)V (t1, ~x1)φ(t1, ~x1)∆t1 (3.7)

The complete wave funtion at t′, ~x′ for t′ > t1 + ∆t1 is therefore ψ(t′, ~x′) ≡ ψ(x′) =
φ(t′, ~x′) + ∆φ(t′, ~x′) and hence

ψ(t′, ~x′) = i

∫
d3x1G0(x

′;x)φ(x)

+

∫
d3x1G0(x

′;x1)V (x1)φ(x1)∆t1 . (3.8)

Also φ(x1) = i
∫
d3xG0(x1;x)φ(x), so

ψ(x′) = i

∫
d3x

[
G0(x

′;x) +

∫
d3x1G0(x

′;x1)V (x1)G0(x1;x)∆t1

]
ψ(x) (3.9)

where we have used that φ(x) = ψ(x) for t ≤ t1. We conclude that

ψ(x′) = i

∫
d3xG(x′;x)ψ(x) (3.10)

with

G(x′;x) = G0(x
′;x) +

∫
d3x1G0(x

′;x1)V (x1)G0(x1;x)∆t1 (3.11)

This is the propagator for a single interaction between t = t1 and t = t1 + ∆t1.

Continuous Interaction: if the interaction of the particle with the potential is occuring
continuously the Interaction Propagator becomes

G(x′;x) = G0(x
′;x) +

∫
d4x1G0(x

′;x1)V (x1)G0(x1;x) + . . . (3.12)

where we have replaced ∆t1 simply by
∫
dt, where the . . . indicate higher order terms for

multiple interaction that go like V 2, V 3, . . . and we have defined
∫
d4x =

∫
dt
∫
d3x.

The wavefunction at a t′ > t is related to the wave function at time t by

ψ(x′) = i

∫
d3xG(x′;x)ψ(x) (3.13)
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3.4 Scattering Amplitudes

We are interested in studying the scattering of a particle off a potential, e.g. an electron
scattering off a Coulomb potential due to a nucleus.

The incoming particle for t → −∞ is a free particle, and the outgoing particle for
t′ → +∞ is a free particle. We want to calculate the Probability Amplitude Sfi for the
transition from the state with the free particle wave function φi(t, ~x) for t→ −∞ to the
state with the free particle wave function φf (t

′, ~x′) for t′ → +∞. If we work with plane
wave solutions, then for t→ −∞,

φi(t, ~x) ∼ e−i(Eit−~pi·~x) (3.14)

and similarly for φf for t′ → +∞.

Sfi is called the scattering amplitude at the time t′ > t. The Interacting particle wave
function ψi which develops from the free particle wave function φi is given by

ψi(x
′) = lim

t→−∞
i

∫
d3xG(x′;x)φi(x) . (3.15)

If we substitute for G(x′;x) from eqn. (3.12) we can calculate the Interacting particle
wave function ψi(x

′) to arbitrary order in V . Then,

Sfi = lim
t′→+∞

〈φf (x
′)|ψi(x

′)〉

= lim
t′→+∞

∫
d3x′φ∗f (x

′)ψi(x
′) . (3.16)

3.5 Differential Equation for G

To obtain G0 (and hence G) we derive a differential equation for G which we specialize to
G0. We will then be able to calculate scattering amplitudes following section 3.3 and 3.4.

Write ψ(x′) = i
∫
d3xG(x′, x)ψ(x) for t′ > t and ψ(x′) = 0 for t′ < t to ensure

that NO propagation of waves backwards in time occurs which would violate causality.
Equivalently:

G(x′;x) = 0 , for t′ < t . (3.17)

We can summarize this in the equation

θ(t′ − t)ψ(x′) = i

∫
d3xG(x′;x)ψ(x) (3.18)
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where θ is the step function, which is defined as

θ(t′ − t) =

{
1 , t′ − t > 0
0 , t′ − t < 0

(3.19)

The step function also has an interesting integral representation

θ(τ) = lim
ε→0+

− 1

2πi

∫ +∞

−∞

dωe−iωτ

(ω + iε)
. (3.20)

This can be checked by evaluating the corresponding contour integral in the complex
ω plane, where the contour is taken to be a path along the real axis which is closed at
infinity by a half-circle in the lower or upper half-plane. For τ > 0 integrate around a
half-circle in the lower half-plane to ensure exponential damping of the integrand, and
the value of the integral is 1 by Cauchy’s theorem, since the pole at ω = −iε is inside
the closed integration contour. For τ < 0 the contour is closed above and the integral
vanishes because the pole lies outside the contour.

The derivative of the step function θ is the Dirac δ function

dθ

dτ
=

1

2π

∫ +∞

−∞
dωe−iωτ = δ(τ) . (3.21)

The wave function ψ(x′) obeys the Schrödinger equation

i
∂ψ(x′)

∂t′
= H(x′)ψ(x′) , (3.22)

thus, (
i
∂

∂t′
−H(x′)

)
(θ(t′ − t)ψ(x′))

= i
∂θ(t′ − t)

∂t′
ψ(x′) + θ(t′ − t)

(
i
∂

∂t′
−H(x′)

)
ψ(x′)

= iδ(t′ − t)ψ(x′)

= i

∫
d3x

(
i
∂

∂t′
−H(x′)

)
G(x′;x)ψ(x) . (3.23)

This is true for arbitrary ψ, thus(
i
∂

∂t′
−H(x′)

)
G(x′;x) = δ(t′ − t)δ(~x′ − ~x) ≡ δ4(x′ − x) (3.24)

because for any function f(~x)∫
d3xδ(~x′ − ~x)f(~x) = f(~x′) . (3.25)
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Eqn. (3.24) is the differential equation which we shall solve for G0 with the bound-
ary condition G0(x

′;x) = 0 for t′ < t. This defines the retarded Green’s function or
propagator.

3.6 Free Particle Propagator

Now we will solve (3.24) for the case of a free particle. Then,

H(~x) = H0(~x) = − 1

2m
~∇2 , (3.26)

and (3.24) becomes (
i
∂

∂t′
+

1

2m
~∇′2
)
G0(x

′;x) = δ4(x′ − x) (3.27)

where ~∇′ denotes derivates with respect to (the components of) ~x′. Because of the homo-
geneity of space-time, G0 can only depend on the combination x′ − x.

Perform a Fourier Transform:

G0(x
′, x) = G0(x

′ − x) =

∫
dωd3p

(2π)4
G0(ω, ~p)e

−iω(t′−t)ei~p·(~x′−~x) . (3.28)

Substituting this in (3.27) gives∫
dωd3p

(2π)4

(
ω − ~p2

2m

)
G0(ω, ~p)e

−iω(t′−t)ei~p·(~x′−~x) =

∫
dωd3p

(2π)4
e−iω(t′−t)ei~p·(~x′−~x)︸ ︷︷ ︸
=δ4(x′−x)

, (3.29)

where we used ∂
∂x′
ei~p·(~x′−~x) = ipxe

i~p·(~x′−~x), etc.

Comparing the Fourier coefficients,(
ω − ~p2

2m

)
G0(ω, ~p) = 1

→ G0(ω, ~p) =
1(

ω − ~p2

2m

) (3.30)

except for the singularity at ω = ~p2

2m
. The correct presription to deal with this singularity

which ensures the retarded boundary condition turns out to be

G0(ω, ~p) =
1(

ω − ~p2

2m
+ iε

) , (3.31)
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where ε→ 0+ after integration.

Now,

G0(x
′ − x) = lim

ε→0+

∫
d3p

(2π)3
ei~p·(~x′−~x)

∫ +∞

−∞

dω

2π

e−iω(t′−t)(
ω − ~p2

2m
+ iε

) . (3.32)

Using the same contour integrations as for θ(t′ − t) in section 3.5, we find that∫ +∞

−∞

dω

2π

e−iω(t′−t)(
ω − ~p2

2m
+ iε

) = −iθ(t′ − t)e−i ~p2

2m
(t′−t) (3.33)

thus

G0(x
′ − x) = −i

∫
d3p

(2π)3
ei~p·(~x′−~x)e−i ~p2

2m
(t′−t)θ(t′ − t) . (3.34)

We can now check by inserting this expression for G0(x
′−x) into (3.27) that this is indeed

a solution of (3.27). Because of the θ(t′ − t) factor it also satisfies the correct boundary
condition G0(x

′ − x) = 0 for t′ < t.

3.7 Interacting Propagator and Sfi

We can calculate the interacting propagator from the free propagator using

G(x′;x) = G0(x
′;x) +

∫
d4x1G0(x

′;x1)V (x1)G0(x1;x) + order V 2 (3.35)

Then we can use section 3.4 to calculate the scattering amplitude Sfi from the initial
state i to the final state f

Sfi =

∫
d3x′φ∗f (x

′)ψi(x
′)

→ Sfi = i lim
t′→+∞,t→−∞

∫
d3x′

∫
d3xφ∗f (x

′)G(x′;x)φi(x) (3.36)

Substituting (3.35) into (3.36), the G0 term contribution is

Sfi = lim
t′→+∞,t→−∞

∫
d3x′φ∗f (x

′)i

∫
d3xG0(x

′;x)φi(x) + . . .

= lim
t′→+∞

∫
d3x′φ∗f (x

′)φi(x
′) + . . .

= δfi + . . . , (3.37)

if we use Normalised wave functions. In the particular case of plane wave functions δfi is
replaced by δ3(~pf − ~pi).
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Thus the complete expression is

Sfi = δfi + i lim
t′→+∞,t→−∞

∫
d3x′

∫
d3x

∫
d4x1

×φ∗f (x′)G0(x
′;x1)V (x1)G0(x1;x)φi(x) + . . .

⇒ Sfi = δfi − i
∫
d4x1φ

∗
f (x1)V (x1)φi(x1) + . . . (3.38)

If the interaction potential V is not too large then the first few terms give a good approx-
imation to the Scattering Amplitude.

3.8 Relativistic Electron Propagator

To generalize the propagator theory to the relativistic case we proceed somewhat intu-
itively. We need to generalize the differential equation for the non-relativistic propagator
G(x′;x), which we found in Section 3.5 to be(

i
∂

∂t′
−H(x′)

)
G(x′;x) = δ4(x′ − x) . (3.39)

This should be compared to the usual (homogeneous) Schrödinger equation(
i
∂

∂t
−H(x)

)
Ψ(x) = 0 . (3.40)

With the Dirac equations in an electromagnetic field

(i∇/−m) Ψ = −qγ · AΨ

⇒ (i∇/− eA/−m) Ψ = 0 , (3.41)

this suggests that the Relativistic Propagator, which we will denote by ŜF (x′;x) should
obey the differential equation

(i∇′/− eA′/−m) ŜF (x′;x) = Iδ4(x′ − x) , (3.42)

where ŜF is a 4× 4 matrix. In longhand notation this becomes

4∑
λ=1

[
γµ(i∇′

µ − eAµ(x′))−mI
]
αλ

[
ŜF (x′;x)

]
λβ

= Iαβδ
4(x′ − x) . (3.43)
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3.9 Free Electron Propagator

The free electron Propagator is denoted by SF (x′;x) and obeys the differential equation

(i∇′/−m)SF (x′;x) = Iδ4(x′ − x) . (3.44)

Using homogeneity of space-time we can take SF to depend only on x′ − x. Now write
SF as a Fourier transform

SF (x′;x) = SF (x′ − x) =

∫
d4p

(2π)4
e−ip·(x′−x)S̃F (p) (3.45)

and substitute it back into (3.44). Noticing that p · (x′ − x) = p0(t
′ − t)− ~p · (~x′ − ~x) and

∇′/ = γ0 ∂
∂t′

+ ~γ · ~∇′ we get∫
d4p

(2π)4
e−ip·(x′−x)(γ0p0 − ~γ · ~p−m)S̃F (p) = δ4(x′ − x)I . (3.46)

But on the other hand the Fourier transform of a Dirac δ function is 1, so we can write

δ4(x′ − x) =

∫
d4p

(2π)4
e−ip·(x′−x) , (3.47)

and we only have to compare Fourier coefficients. We conclude that

(p/−m)S̃F (p) = I , (3.48)

and hence we find for the free electron propagator in momentum space

S̃F (p) = (p/−m)−1 , (3.49)

which can also be written as

S̃F (p) =
(p/+m)

(p2 −m2)
, (3.50)

for p2 = m2.

There are singularities at p2 = m2 because the denominator in S̃F (p) becomes zero
and the propagator develops poles. The singularities are localized at

p2
0 − ~p2 = m2

⇒ p0 = ±
√
~p2 +m2 ≡ ±E . (3.51)

This means that the singularities occur when the 4-momentum p is on-shell i.e. it obeys
the relativistic energy-momentum relation p2 = m2.

We use Feynman’s boundary conditions to handle the singularities. More specifically,
SF (x′ − x) describes the the propagation of an electron (e−) from the space-time point
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x to x′. Positive (negative) energy electrons are represented by wave functions with
positive (negative) frequency time behaviour, namely e−iωt (eiωt) where ω > 0. Because
of hole theory, electrons are associated with positive energy electrons propagating forward
in time, and positrons are associated with negative energy wave functions propagating
backwards in time. (Recall that a negative energy wave function of 4-momentum −p,
which is propagating backwards in time, represents a positron of momentum +p, which
is therefore propagating forward in time.)

To ensure that an electron (positron) does not spontaneously change into a positron
(electron) we require that a positive (negative) frequency wave propagating from x into
the future (past) possesses ONLY positive (negative) frequency components. Therefore
we have to require that for t′ > t (t′ < t) the propagator SF (x′−x) contains only positive
(negative) frequency components. These are the Feynman boundary conditions on SF ; it
turns out that in momentum space this translates into (iε prescription)

S̃F (p) =
(p/+m)

(p2 −m2 + iε)
, (3.52)

where ε→ 0+.

Let us check this for t′ > t. Starting point is the Fourier transform of (3.52)

SF (x′ − x) =

∫
d4p

(2π)4
e−ip·(x′−x) (p/+m)

(p2 −m2 + iε)

=

∫
d3p

(2π)3
ei~p·(~x′−~x)

∫
dp0

2π
e−ip0(t′−t) (p/+m)

(p2 −m2 + iε)
. (3.53)

Let us focus on the p0 integration. For t′ > t we evaluate the p0 integral by closing the
contour with a semi-circle in the lower half p0−plane, since

e−ip0(t′−t) = e−i<(p0)(t′−t)+=(p0)(t′−t)

= e=(p0)(t′−t)e−i<(p0)(t′−t) (3.54)

and for t′ > t we have e=(p0)(t′−t) → 0 if =(p0)→ −∞.

Thus the integral along the large semi-circle is zero. Therefore,∫ +∞

−∞

dp0

2π
e−ip0(t′−t) (p/+m)

(p2 −m2 + iε)

= −
∫
C

dp0

2π
e−ip0(t′−t) (p/+m)

(p2 −m2)
(3.55)

where C denotes the closed contour. For small ε, the singularities are at p0 = E − iε
2E

and
p0 = −E + iε

2E
. Since ε > 0, the singularity at p0 = −E is pushed into the upper half p0

plane and is, therefore, outside the contour and the singularity at p0 = E is inside the
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contour. Instead of adding the small imaginary parts, we can slightly deform the contour
to include the singularity at p = E and exclude the singularity at p0 = −E.

e−ip0(t′−t) (p/+m)

(p2 −m2)
=

(p0γ
0 − ~p · ~γ +m)e−ip0(t′−t)

(p0 + E)(p0 − E)
(3.56)

with E =
√
~p2 +m2.

Thus the residue at p0 = E is

(Eγ0 − ~p · ~γ +m)e−iE(t′−t)

2E
. (3.57)

Consequently, for t′ > t

SF (x′ − x) = −i
∫

d3p

(2π)3
ei~p·(~x′−~x)e−iE(t′−t) (Eγ

0 − ~p · ~γ +m)

2E
(3.58)

As required this contains only positive frequency modes.

For t′ < t we have to close the contour in the upper half p0 plane and we find in a
similar fashion that only negative frequency components contribute.

3.10 Electron Propagator in an Electromagnetic Field

The propagator ŜF (x′;x) satisfies

(i∇′/− eA′/−m)ŜF (x′;x) = δ4(x′ − x)I (3.59)

We obtain an integral equation for ŜF (x′;x) as follows

(i∇′/−m)ŜF (x′;x) = eA/′ŜF (x′;x) + δ4(x′ − x)

⇒ (i∇′/−m)ŜF (x′;x) =

∫
d4x′′δ4(x′′ − x′)

[
δ4(x′′ − x) + eA/′′ŜF (x′′;x)

]
(3.60)

However, (i∇′/−m)SF (x′;x) = δ4(x′− x) for the free propagator. Consistency is obtained
if

ŜF (x′;x) =

∫
d4x′′SF (x′;x′′)

[
δ4(x′′ − x) + eA/′′ŜF (x′′;x)

]
, (3.61)

which can be checked by acting on both sides with (i∇′/−m).

Therefore, replacing x′′ by x1, we obtain

ŜF (x′;x) = SF (x′;x) + e

∫
d4x1SF (x′;x1)A/(x1)ŜF (x1;x) , (3.62)

which is an integral equation for ŜF which may be solved by iteration;
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• zeroth order: Neglecting eA/ we have ŜF (x′;x) = SF (x′;x).

• first order: To first order in eA/, substitute the zeroth order solution for ŜF on the
righthand side of (3.62) to obtain

ŜF (x′;x) = SF (x′;x) + e

∫
d4x1SF (x′;x1)A/(x1)SF (x1;x) , (3.63)

and so on for higher orders.

The positive energy Dirac spinor Ψ̂ at time t′ > t is related to the wave function Ψ at
time t by

Ψ̂(x′) = i

∫
d3xŜF (x′;x)Ψ(x) , (3.64)

where Ψ̂ denotes an Interacting electron, whereas the free wave function at t′ > t for a
positive energy electron is

Ψ(x′) = i

∫
d3xSF (x′;x)Ψ(x) . (3.65)

3.11 Scattering Amplitudes for Electrons

The incoming particle for t → −∞ is a free, positive energy electron and the outgoing
particle for t′ → +∞ is a free electron. The electron has been scattered by the electro-
magnetic field Aµ. We wish to calculate the probability amplitude Sfi for the transition
from the state with the free electron wave function ψi(t, ~x) for t→ −∞ to the state with
the electron wavefunction ψf (t

′, ~x′) for t′ → +∞.

At time t′ > t, the interacting electron wavefunction ψ̂i which develops from the free
electron wave function ψi is given by

ψ̂i(x
′) = lim

t→−∞
i

∫
d3xŜF (x′;x)ψi(x) . (3.66)

Substituting for ŜF from (3.62) we get ψ̂i(x
′) to any required order in e. Then

Sfi = lim
t′→+∞

〈ψf (x
′)|ψ̂i(x

′)〉

= lim
t′→+∞

∫
d3x′ψf (x

′)ψ̂i(x
′) , (3.67)

where ψ denotes the adjoint spinor ψ†γ0.
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Proceeding as before

Sfi = i lim
t′→+∞,t→−∞

∫
d3x′

∫
d3xψf (x

′)ŜF (x′;x)ψi(x) (3.68)

Substituting (3.63) for ŜF in (3.68) gives

Sfi = lim
t′→+∞,t→−∞

∫
d3x′ψf (x

′)i

∫
d3xSF (x′;x)ψi(x) + . . .

= lim
t′→+∞

∫
d3x′ψf (x

′)ψi(x
′) + . . . = δfi + . . . (3.69)

Note, that δfi has to be replaced by a Dirac δ function if we consider plane wave solutions.

If we use normalized wave functions the complete expression (to first order in the
interaction) for Sfi becomes

Sfi = δfi + i lim
t′→+∞,t→−∞

e

∫
d3x′

∫
d3x

∫
d4x1ψf (x

′)SF (x′;x1)A/(x1)SF (x1;x)ψi(x) + . . .

⇒ Sfi = δfi − ie
∫
d4x1ψf (x1)A/(x1)ψi(x1) (3.70)

3.12 Scattering Amplitudes Involving Positrons

For a positron scattering off an electromagnetic field, we note that to lowest order in the
interaction the cross section is identical to electron scattering. Here the incoming state is
a negative energy electron in the future propagating backwards in time with wave function
ψi and the outgoing state is a negative energy electron in the past with wave function ψf .
Then,

Sfi = lim
t′→−∞

〈ψf (x
′)|ψ̂i(x

′)〉 (3.71)

and we get essentially the same result with negative energy wavefunctions. Note that
the momentum of the ”incoming” negative energy eletron is related to the momentum
of the corresponding outgoing positron via pe−

i = −pe+

f , and that the momentum of the
”outgoing” negative energy eletron is related to the momentum of the corresponding
outgoing positron via pe−

f = −pe+

i .

4 Applications

4.1 Scattering of an Electron from a Fixed Coulomb Potential

This is the Rutherford scattering problem. An electron e− scatters off the Coulomb
potential due to a nucleus. We calculate the scattering amplitude Sfi to first order in e
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(i.e. to first order in the interaction) then, if the final state is different from the initial
state (i 6= f)

Sfi = −ie
∫
d4xψf (x)A/(x)ψi(x) (4.1)

If we choose free particle wave functions ψi and ψf normalised in a box of volume V , then

ψi(x) =
1√

2EiV
e−ipi·xU(pi, si) and

ψf (x) =
1√

2EfV
e−ipf ·xU(pf , sf ) . (4.2)

Normalisation of wave functions

Recall that the probability density is ρ = ψ†ψ. Now take

ψ = Ne−ip·xU(p, s)

⇒ ρ = ψ†ψ = |N |2e−ip·xe+ip·xU †(p, s)U(p, s) = |N |2U †(p, s)U(p, s) (4.3)

Integrate this over the volume V∫
d3xψ†ψ = |N |2U †(p, s)U(p, s)

∫
d3x

= |N |2U †(p, s)U(p, s)V

= |N |22EV ≡ 1 , (4.4)

from which we find

|N |2 =
1

2EV
⇒ N =

1√
2EV

. (4.5)

To describe the Coulomb potential due to a nucleus of atomic number Z we take

A0 =
−Ze
4π|~x|

, ~A = 0 . (4.6)

Then

Sfi =
ie2Z

4π

1

2V

1√
EiEf

U(pf , sf )γ
0U(pi, si)

∫
d4x

|~x|
ei(pf−pi)·x︸ ︷︷ ︸
=I

, (4.7)

and the integral is

I =

∫
dx0ei(Ef−Ei)x

0

∫
d3x

|~x|
e−i(~pf−~pi)·~x

= 2πδ(Ef − Ei)
4π

|~q|2
(4.8)
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where ~q = ~pf − ~pi.

Thus the scattering amplitude is

Sfi =
ie2Z

2V
√
EiEf

U(pf , sf )γ
0U(pi, si)

|~q2|
2πδ(Ef − Ei) . (4.9)

The transition probability from state i to state f is given by |Sfi|2

|Sfi|2 =
Z2(4πα)2

4V 2EiEf

|U(pf , sf )γ
0U(pi, si)|2

|~q|4
[2πδ(Ef − Ei)]

2 (4.10)

What is the interpretation of [2πδ(Ef − Ei)]
2?

Write

2πδ(Ef − Ei) =

∫ +∞

−∞
dtei(Ef−Ei)t

= lim
T→∞

∫ +T/2

−T/2

dtei(Ef−Ei)t

= lim
T→∞

1

i(Ef − Ei)

[
ei(Ef−Ei)t

]T/2

−T/2

= lim
T→∞

2 sin((Ef − Ei)T/2)

(Ef − Ei)
, (4.11)

thus

[2πδ(Ef − Ei)]
2 = lim

T→∞

4 sin2((Ef − Ei)T/2)

(Ef − Ei)2
. (4.12)

However, it is known that for α < Ei < β∫ β

α

sin2((Ef − Ei)T/2)

(Ef − Ei)2
dEf = 2πT , (4.13)

for large T . Hence, we can interprete the RHS of (4.12) as 2πTδ(Ef − Ei) and we can
take the intepretation

[2πδ(Ef − Ei)]
2 = 2πTδ(Ef − Ei) . (4.14)

The difficulty we encountered can be avoided by using wave packets instead of plane
waves.

With this intepretation of the square of the Dirac δ-function, the transition probability
per unit time becomes

|Sfi|2

T
=

8π3Z2α2

V 2EiEf

|U(pf , sf )γ
0U(pi, si)|2

|~q|4
δ(Ef − Ei) . (4.15)
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We are interested in the transition probability with a chosen range of final momenta,
~pf to ~pf + d~pf containing V

(2π)3
d3pf states. This is

V

(2π)3
d3pf |Sfi|2 . (4.16)

In spherical coordinates in momentum space

d3pf = p2
fdpf sin θdθdφ︸ ︷︷ ︸

dΩ= solid angle

, (4.17)

where pf = |~pf |. Thus, we require

V

(2π)3
p2

fdpfdΩ
|Sfi|2

T
(4.18)

The differential cross section dσ(θ, φ) for scattering into the final solid angle dΩ is
defined to be

dσ(θ, φ) =
Probability per unit time of a transition into dΩ

Flux of incident particles
(4.19)

where (Flux of incident particles) = (Incident probability per unit area per unit time).

Thus,

Flux = (ψ†iψi)︸ ︷︷ ︸
Probability density

× |~pi|
Ei︸︷︷︸

=|~vi|

(4.20)

Recall probability density ρ = ψ†ψ and with our normalisation

ψ†iψi = 2E|N |2 =
2E

2EV
=

1

V
. (4.21)

Thus, the flux of incident particles is

Flux =
|~pi|
V Ei

. (4.22)

Now the differential cross section into a solid angle dΩ is given by

dσ

dΩ
=

8π3V Z2α2Ei

(2π)3V Ei|~pi|

∫ ∞

0

|U(pf , sf )γ
0U(pi, si)|2

|~q|4
δ(Ef − Ei)

p2
fdpf

Ef

=
Z2α2

|~pi|

∫ ∞

0

|U(pf , sf )γ
0U(pi, si)|2

|~q|4
δ(Ef − Ei)

p2
fdpf

Ef

. (4.23)
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Because E2
f = p2

f +m2 we have

2EfdEf = 2pfdpf , (4.24)

and the integral in (4.23) becomes∫ ∞

0

dEf
|Uγ0U |2

|~q|4
pfδ(Ef − Ei) . (4.25)

The δ function results in setting Ef = Ei and |~pf | = |~pi|. Therefore,

dσ

dΩ
=
Z2α2

|~q|4
|U(pf , sf )γ

0U(pi, si)|2 , (4.26)

all evaluated at Ef = Ei and |~pf | = |~pi|.

If we do not observe the spin state of the final electrons, then we should sum over final
spin states (polarisations) in dσ

dΩ
. If in the incident beam of electrons each spin is equally

likely (unpolarised beam), then we should also average over the initial spin states. In that
case,

dσ

dΩ
=
Z2α2

2|~q|4
∑
sf ,si

|U(pf , sf )γ
0U(pi, si)|2 , (4.27)

all evaluated at Ef = Ei and |~pf | = |~pi|. Note that we multiplied with 1/2 for the average
over the two initial spin states.

Such spin summations are evaluated by reducing the problem to evaluating the trace
of a matrix and occur often in scattering problems, so we will digress a little into this
subject.

4.2 Trace Theorems

Abbreviating U(pf , sf )γ
0U(pi, si) to U(f)γ0U(i) we need to study |U(f)γ0U(i)|2. Con-

sider the general case, which is useful for other scattering amplitudes, |U(f)ΓU(i)|2 where
Γ is some 4× 4 matrix. Usually Γ is a product of various γ-matrices.

First notice that
(U(f)ΓU(i))∗ = U(i)ΓU(f) (4.28)

where Γ = γ0Γ†γ0. Thus, we need to evaluate

|U(f)ΓU(i)|2 = U(f)ΓU(i)(U(f)ΓU(i))∗ = U(f)ΓU(i)U(i)ΓU(f) . (4.29)
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Using the properties of γ-matrices we can show that

γµ = γµ

γ5 = −γ5

γµγ5 = γµγ5 = −γ5γµ (4.30)

and
a/b/c/ . . . q/ = q/ . . . c/b/a/ . (4.31)

The spin sums are reduced to matrix traces as follows. We use the following property of
Dirac spinors which can be derived from their explicit representation∑

s

Uα(p, s)Uβ(p, s) = (p/+mI)αβ . (4.32)

∑
sf ,si
|U(f)ΓU(i)|2 =

∑
sf ,si

U(f)ΓU(i)U(i)ΓU(f)

=
∑
sf ,si

U(f)αΓαβU(i)βU(i)γΓγδU(f)δ

=
∑
sf ,si

U(f)δU(f)αΓαβU(i)βU(i)γΓγδ

= (p/f +mI)δαΓαβ(p/i +mI)βγΓγδ

=
∑

δ

(
(p/f +mI)Γ(p/i +mI)Γ

)
δδ

(4.33)

⇒
∑
sf ,si

|U(f)ΓU(i)|2 = Tr
(
(p/f +mI)Γ(p/i +mI)Γ

)
(4.34)

Therefore, the problem of evaluating the spin sums reduces to evaluating the trace of a
matrix.

The following Theorems turn out to be useful in applications.

Theorem 1: Tr(a/1 . . . a/n) = 0 if n is odd.

Proof:

Tr(a/1 . . . a/n) = Tr(a/1 . . . a/nγ5γ5)

= Tr(γ5a/1 . . . a/nγ5)

= (−1)nTr(a/1 . . . a/nγ5γ5)

= (−1)nTr(a/1 . . . a/n) , (4.35)

where we have used γ5γ5 = I in the first line, the cyclic property of any matrix trace in
the second line. The identity γ5γ

µ = −γµγ5 was used n times in the third line to bring
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γ5 from the left in the matrix trace to the right inside the matrix trace and in line four
we used again γ5γ5 = I.

Thus for odd n

Tr(a/1 . . . a/n) = −Tr(a/1 . . . a/n)⇒ Tr(a/1 . . . a/n) = 0 . (4.36)

Theorem 2: Tr(a/b/) = 4a · b

Proof:

Tr(a/b/) = Tr(b/a/)

=
1

2
(Tr(a/b/) + Tr(b/a/))

=
1

2
Tr(a/b/+ b/a/)

=
1

2
Tr(aµbν(γ

µγν + γνγµ))

=
1

2
Tr(aµbν2g

µνI)

= a · b TrI
= 4a · b Q.E.D. (4.37)

Theorem 3: Tr(a/b/c/d/) = 4[(a · b)(c · d) + (a · d)(b · c)− (a · c)(b · d)]

Proof:

Use {a/1, a/2} = 2a1 · a2I. This follows from {γµ, γν} = 2gµνI:

{a/1, a/2} = a/1a/2 + a/2a/1

= (a1)µ(a2)ν(γ
µγν + γνγµ)

= (a1)µ(a2)ν2g
µνI

= 2a1 · a2I (4.38)

Tr(a/b/c/d/) = −Tr(b/a/c/d/) + 2(a · b)Tr(Ic/d/)
= Tr(b/c/a/d/)− 2(a · c)Tr(b/Id/) + 2(a · b)Tr(c/d/)
= −Tr(b/c/d/a/) + 2(a · d)Tr(b/c/I)− 2(a · c)Tr(b/d/) + 2(a · b)Tr(c/d/) , (4.39)

from which follows

Tr(a/b/c/d/) + Tr(b/c/d/a/) = 2Tr(a/b/c/d/)

= 2(a · d)Tr(b/c/)− 2(a · c)Tr(b/d/) + 2(a · b)Tr(c/d/) . (4.40)
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Using Theorem 2 we find

Tr(a/b/c/d/) = 4(a · b)(c · d) + 4(a · d)(b · c)− 4(a · c)(b · d) . (4.41)

4.3 The Mott Cross-Section

Return to the spin avaraged differential cross-section for scattering an electron off a fixed
Coulomb potential — the Mott Cross-Section.

We need γ0 = γ0(γ0)†γ0 = γ0γ0γ0 = γ0. Then in dσ/dΩ we have the term∑
si,sf

|U(pf , sf )γ
0U(pi, si)|2 = Tr

(
(p/f +mI)γ0(p/i +mI)γ0

)
=

(
(p/f +mI)γ0(p/i +mI)γ0

)
= m2Tr(γ0γ0) +mTr(p/fγ

0γ0) +mTr(γ0p/iγ
0) + Tr(p/fγ

0p/iγ
0)

= m2Tr(I) + Tr(p/fγ
0p/iγ

0)

= 4m2 + Tr(p/fγ
0p/iγ

0) , (4.42)

then introduce the 4-vector e ≡ (1, 0, 0, 0), so that e/ = γ0. Hence, we can write

Tr(p/fγ
0p/iγ

0) = Tr(p/fe/p/ie/)

= 4 [(pf · e)(pi · e) + (pi · e)(pf · e)− (pf · pi)(e · e)]
= 4[2EfEi − pf · pi] . (4.43)

Therefore, ∑
si,sf

|U(pf , sf )γ
0U(pi, si)|2 = 4[m2 + 2EfEi − pf · pi] , (4.44)

evaluated at Ef = Ei and |~pf | = |~pi| becomes,∑
si,sf

|U(pf , sf )γ
0U(pi, si)|2 = 4[m2 + 2EfEi − (EfEi − ~pf · ~pi)]

= 4[m2 + EfEi + ~pf · ~pi]

= 4[m2 + EfEi + |~pf ||~pi| cos θ]

= 4[ m2︸︷︷︸
=E2−|~p|2

+E2 + |~p|2 cos θ]

= 4[2E2 − |~p|2 (1− cos θ)︸ ︷︷ ︸
=2 sin2(θ/2)

]

= 8[E2 − |~p|2 sin2(θ/2)] (4.45)
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⇒
∑
si,sf

|U(pf , sf )γ
0U(pi, si)|2 = 8E2[1− β2 sin2(θ/2)] , (4.46)

with β = |~p|
E

.

The differential cross section also depends on

~q2 = (~pf − ~pi)
2 = ~p2

f + ~p2
i − 2~pf · ~pi

= |~pf |2 + |~pi|2 − 2|~pf ||~pi| cos θ

= 2|~p|2(1− cos θ)

= 4|~p|2 sin2(θ/2) , (4.47)

hence,
|~q|4 = 16|~p|4 sin4(θ/2) . (4.48)

Now, the spin avaraged differential cross-section is

dσ

dΩ
=

Z2α2

2|~q|4
∑
si,sf

|U(pf , sf )γ
0U(pi, si)|2

=
Z2α2

32|~p|4 sin4(θ/2)
8E2[1− β2 sin2(θ/2)]

=
Z2α2

4|~p|2β2 sin4(θ/2)
(1− β2 sin2(θ/2)) , (4.49)

where β = |~p|
E

. This is the Mott Cross-Section.

In the non-relativistic limit, ~p → m~v, β = |~p|
E

= m|~v|
m

= |~v| (note that we set c = 1)
and the β2 sin2(θ/2) term can be neglected. Then, we obtain the Rutherford formula for
Coulomb scattering of an electron:

dσ

dΩ
=

Z2α2

4m2|~v|4 sin4(θ/2)
(4.50)

4.4 Electron Scattering from a Dirac Proton

Instead of considering the scattering in a fixed potential, as in the last section, we consider
the scattering of an electron in the EM field generated by a free Dirac proton. We visualise
this process in terms of the electron e− and the proton p exchanging a photon which may
be virtual, i.e. q2 6= 0

(figure goes here)
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The Scattering Amplitude to first order in the charge e is given by

Sfi = −ie
∫
d4xψf (x)A/(x)ψi(x) (4.51)

where ψi and ψf are free particle wave functions for the initial and final electron and the
EM 4-vector potential Aµ is produced by the EM 4-vector current Jµ due to the proton
p. Note that Jµ has components (ρ,~j) where ρ is the charge density and ~j is the current
density vector. We need to calculate Aµ in terms of Jµ, which is done using the a photon
propagator (Green’s function).

The Maxwell equation in Lorentz gauge ∂µA
µ = 0 is given by

�Aµ(x) ≡ ∂ν∂
νAµ(x) = Jµ(x) . (4.52)

In the absence of any sources or currents

∂ν∂
νAµ(x) = 0 , (4.53)

which suggests the introduction of a propagator DF (x− y) for the photon, obeying

∂ν∂
νDF (x− y) = δ4(x− y) , (4.54)

where the derivatives are taken w.r.t. x. The corresponding momentum space propagator
D̃F (q) is defined by

DF (x− y) =

∫
d4q

(2π)4
e−iq·(x−y)D̃F (q) . (4.55)

Therefore,

∂ν∂
νDF (x− y) =

∫
d4q

(2π)4
e−iq·(x−y)(−(q0)2 + ~q2)D̃F (q) = δ4(x− y) (4.56)

and, since the Fourier transform of the δ function is 1, −q2D̃F (q) = 1. Thus,

D̃F (q) =
−1

q2
(4.57)

for q2 6= 0, and in analogy with the e− propagator, we avoid the poles at q2 = 0 by writing

D̃F (q) =
−1

q2 + iε
(4.58)

with ε→ 0+. Thus the photon propagator is

DF (x− y) =

∫
d4q

(2π)4
e−iq·(x−y) −1

q2 + iε
, (4.59)

and, hence,

Aµ(x) =

∫
d4yDF (x− y)Jµ(y) (4.60)
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obeys
∂ν∂

νAµ(x) = Jµ(x) . (4.61)

Now, we can write the S-matrix element

Sfi = −ie
∫
d4xψf (x)A/(x)ψi(x) = −ie

∫
d4xψf (x)γµψi(x)A

µ(x) (4.62)

as

Sfi = −ie
∫
d4x

∫
d4yψf (x)γµψi(x)DF (x− y)Jµ(y) . (4.63)

Next, we need an expression for the proton current Jµ(y):

Recall that the probability density of a Dirac particle is ψ†ψ = ψγ0ψ and the probability
current is ψ†~αψ = ψγ0~αψ = ψ~γψ. For a particle of charge q, this will give the charge
density ρ = qψγ0ψ and the current density vector ~j = qψ~γψ. Thus the 4-vector current is
Jµ = qψγµψ. For a proton with initial wavefunction ψp

i (x), final wave function ψp
f (x) and

charge +e, the generalization of Jµ is the so called Electromagnetic Transition Current

Jµ = eψ
p

f (x)γ
µψp

i (x) , (4.64)

so that

Sfi = i

∫
d4x

∫
d4y
(
− eψf (x)γµψi(x)

)
DF (x− y)

(
+ eψ

p

f (x)γ
µψp

i (x)
)
. (4.65)

The S-matrix element couples the EM transition current for the electron to the EM
transition current for the proton through the photon propagator.

Normalising in a box of volume V , as in the last section, the free particle wave functions
for the incoming and outgoing electrons and protons are:

ψi(x) =
1√

2EiV
e−ipi·xU(pi, si)

ψf (x) =
1√

2EfV
e−ipf ·xU(pf , sf )

ψp
i (y) =

1√
2EiV

e−iPi·yU(Pi, Si)

ψp
f (y) =

1√
2EfV

e−iPf ·yU(Pf , Sf ) (4.66)

where Ei and Ef are the proton energies. Therefore,

Sfi = −ie2 1√
2EiV

1√
2EfV

1√
2EiV

1√
2EfV

U(pf , sf )γµU(pi, si)U(Pf , Sf )γ
µU(Pi, Si)

×
∫
d4x

∫
d4y ei(pf−pi)·xei(Pf−Pi)·yDF (x− y) . (4.67)
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The integral in (4.67) is

I =

∫
d4x

∫
d4y ei(pf−pi)·xei(Pf−Pi)·y

∫
d4q

(2π)4
e−iq·(x−y) −1

q2 + iε

=

∫
d4q

(2π)4

−1

q2 + iε
(2π)4δ4(q − pf + pi)

∫
d4yei(q+Pf−Pi)·y

=
−1

q2 + iε

∫
d4yei(pf−pi+Pf−Pi)·y

=
−1

q2 + iε
(2π)4δ4(pf − pi + Pf − Pi) (4.68)

where q is set to q = pf − pi due to the δ function in the second line!

Thus,

Sfi =
1√

2EiV

1√
2EfV

1√
2EiV

1√
2EfV

(2π)4δ4(pf − pi + Pf − Pi)Mfi (4.69)

where we have introduced the important quantity Mfi, which is also called Invariant
Amplitude or Invariant Matrix Element, and

Mfi = −ie
2

q2
U(pf , sf )γµU(pi, si)U(Pf , Sf )γ

µU(Pi, Si) (4.70)

with q = pf − pi. The Transition Amplitude from state i to state f is given by

|Sfi|2 =
|Mfi|2

16EiEfEiEfV 4

[
(2π)4δ4(pf − pi + Pf − Pi)

]2
. (4.71)

Using the interpretation of the square of the δ function as in Section 4.1 we obtain for
large times T

|Sfi|2 =
|Mfi|2

16EiEfEiEfV 4
(2π)4δ4(pf − pi + Pf − Pi)V T , (4.72)

where we got an additional factor of the volume V compared to Section 4.1 because of
the square of three δ functions for the three spatial momenta!

4.5 Evaluation of |Mfi|2 for Electron-Proton Scattering

As in Section 4.1, we assume that the incident beams of electrons and protons are un-
polarised with each spin state equally likely. Hence, we have to average over initial spin
states. We also assume that we do not observe the final spin states of the electrons and
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protons. Therefore, we also have to sum over the final spin states. Thus, in order to
evaluate the cross section we need to evaluate

1

4

∑
sf ,si,Sf ,Si

|Mfi|2 ≡ |M fi|2 , (4.73)

where the prefactor 1/4 comes from averaging over the initial electron and proton spin
states. In particular we need to calculate∑

sf ,si,Sf ,Si

|U(pf , sf )γµU(pi, si)U(Pf , Sf )γ
µU(Pi, Si)|2

=
∑

sf ,si,Sf ,Si

[
U(pf , sf )γµU(pi, si)U(Pf , Sf )γ

µU(Pi, Si)

×
(
U(pf , sf )γνU(pi, si)

)∗(
U(Pf , Sf )γ

νU(Pi, Si)
)∗]

=
∑
sf ,si

U(pf , sf )γµU(pi, si)U(pi, si) γν︸︷︷︸
=γν

U(pf , sf )

×
∑
Sf ,Si

U(Pf , Sf )γ
µU(Pi, Pi)U(Pi, Si) γν︸︷︷︸

=γν

U(Pf , Sf )

= Tr
(
(p/f +m)γµ(p/i +m)γν

)
Tr
(
(P/f +M)γµ(P/i +M)γν

)
, (4.74)

where we have used several identities from Section 4.2.

The trace can be evaluated to obtain

Tr
(
(p/f +m)γµ(p/i +m)γν

)
= 4

[
pµ

fp
ν
i + pν

fp
µ
i + gµν(m2 − pf · pi)

]
(4.75)

and similarly for the proton trace. Thus,

1

16
Tr
(
(p/f +m)γµ(p/i +m)γν

)
Tr
(
(P/f +M)γµ(P/i +M)γν

)
=

[
pµ

fp
ν
i + pν

fp
µ
i + gµν(m2 − pf · pi)

] [
(Pf )µ(Pi)ν + (Pf )ν(Pi)µ + gµν(M

2 − Pf · Pi)
]

= 2pf · Pfpi · Pi + 2pf · Pipi · Pf − 2m2Pf · Pi − 2M2pf · pi + 4m2M2 (4.76)

and finally we obtain

|M fi|2 =
1

4

∑
sf ,si,Sf ,Si

|Mfi|2 (4.77)

=
8e4

(q2)2

[
pf · Pfpi · Pi + pf · Pipi · Pf −m2Pf · Pi −M2pf · pi + 2m2M2

]
.
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4.6 dσ
dΩ for Electron-Proton Scattering

The Transistion Amplitude per unit time per unit volume into the range of finite momenta
~pf to ~pf + d~pf and ~Pf to ~Pf + d~Pf is

|Sfi|2

V T

V

(2π)3
d3pf

V

(2π)3
d3Pf =

|Sfi|2

T

V

(2π)6
d3pfd

3Pf

=
|M fi|2

16EiEfEiEfV 4
(2π)4V Tδ4(pf + Pf − pi − Pi)

V

T (2π)6
d3pfd

3Pf

=
|M fi|2

16V 2EiEfEiEf (2π)2
δ4(pf + Pf − pi − Pi)d

3pfd
3Pf . (4.78)

To obtain the differential cross section for the scattered electron dσe

dΩe
we need:

dσe = (4.79)

Probability of e− scattering into solid angle dΩe per unit time

(Nr. of Target Particles)(Nr. of beam particles incident per unit area per unit time)

In our normalisation

(Nr. of Target Particles per unit volume) =
1

V
, (4.80)

also for collinear beams

(Nr. of beam particles incident per unit area per unit time) =
1

V

∣∣~ve
i − ~vP

i

∣∣
=

1

V

∣∣∣∣∣ |~pi|
Ei

+
|~Pi|
Ei

∣∣∣∣∣ (4.81)

To obtain dσe

dΩe
we must integrate d3Pf and d|~pf | but NOT dΩe. Now,

d3pf = |~pf |2d|~pf |dΩe (4.82)

and as in Section 4.1, |~pf |d|~pf | = EfdEf . Hence,

d3pf = |~pf |EfdEfdΩe . (4.83)

The
∫
d3Pf integration is trivial because of the δ functions in (4.78), i.e. we simply

have to evaluate everything at ~Pf = ~Pi + ~pi − ~pf . We find

dσe =

∫
|M fi|2

16V 2EiEfEiEf (2π)2

|~pf |EfdEfdΩe

1
V 2 |~ve

i − ~vP
i |

δ(Ef + Ef − Ei − Ei) (4.84)
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evaluated at ~Pf = ~Pi + ~pi − ~pf . Therefore,

dσe

dΩe

=
|M fi|2

16EiEiEf (2π)2

|~pf |
|~ve

i − ~vP
i |

(4.85)

evaluated at Pf = Pi + pi − pf .

For a target proton initially at rest pi = (Ei, ~pi), pf = (Ef , ~pf ), Pi = (Ei = M, ~Pi = ~0).
Then, ∣∣~ve

i − ~vP
i

∣∣ =
~pi

Ei

(4.86)

and
dσe

dΩe

=
|M fi|2

16(2π)2EiEf

|~pf |
|~pi|

(4.87)

Slow Electrons: Ei, Ef << M

In this case the proton recoil is tiny and Ef ∼ Ei = M , Ef ∼ Ei, |~pf | ∼ |~pi| and
~Pf ∼ ~0. This is like scattering off a static nucleus with Z = 1 and we should recover the
Mott cross section formula.

dσe

dΩe

=
|M fi|2

16(2π)2M2
(4.88)

Also, with |M fi|2 from Section 4.6, we obtain

|M fi|2 ∼
8e4

(q2)2
M2

(
2E2

i +m2 − pf · pi

)
(4.89)

with, q = pf − pi ∼ (0, ~pf − ~pi) = (0, ~q). Using |~q|4 = 16|~pi|4 sin4(θ/2) from Section 4.3
and after further simplifications we recover the Mott cross section (with Z = 1)

dσe

dΩe

=
α2

4|~pi|2β2 sin4(θ/2)

(
1− β2 sin2(θ/2)

)
(4.90)

where β ≡ |~pi|/Ei.

Ultrarelativistic Electrons: Ei, Ef >> m where m is the electron mass. In this case
simplification of |M fi|2 leads to

dσe

dΩe

=
α2

4E2
i

[
cos2 θ

2
− q2

2M2 sin2 θ
2

]
sin4 θ

2

[
1 + 2Ei

M
sin2 θ

2

] (4.91)

which agrees with experiment.
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4.7 Feynman Rules

More generally, the Invarian Amplitude Mfi derived from a Feynman diagram is given by
the following Rules:

(a) Associate with each incoming/outgoing external electron (or spin-1
2

particle) line of

4-momentum pi/pf a factor U(pi, si)/U(pf , sf ).

(b) Associate with each incoming/outgoing negative energy electron line a factor V (pi, si)/
V (pf , sf ) where −pi / −pf are the 4-momenta of the negative energy electrons, i.e.
pi/pf are the 4-momenta of the positive energy positrons.

(c) Associate with each internal photon line of 4-momentum q a factor −igµν

q2 .

(d) Associate with each interaction vertex a factor −ieγµ for a particle (or negative
energy particle) of charge e.

The Scattering Amplitude Sfi is related to the Invariant Amplitude Mfi as in Section
4.5. The differential cross section can then be calculated from |Sfi|2 using the methods
developed earlier.

Example 1: For electron-positron scattering there are two Feynman diagrams contributing
to Mfi

(picture goes here)

Then,

Sfi =
(2π)4δ4(p3 + p4 − p1 − p2)√
2E1V

√
2E2V

√
2E3V

√
2E4V

[
−i

(p3 − p1)2
U(p3)(−ieγµ)U(p1)V (p2)(−ieγµ)V (p4)

− −i
(p1 + p2)2

V (p2)(−ieγµ)U(p1)U(p3)(−ieγµ)V (p4)

]
(4.92)

Note that the relative minus sign between the first and second term has been introduced
to ensure ANTI-SYMMETRY under the interchange of the two incoming electrons (one
of which has negative energy) and under the interchange of the two outgoing electrons.
Note that this anti-symmetrisation is only necessary if identical particles, in this case
electrons, are considered:

U(p1)↔ V (p4) OR U(p3)↔ V (p2)

Example 2: Electron scattering off a Dirac proton. There is only one diagram to consider
(photon exchange between the two particles) because the two particles are not identical. It
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is left as an exercise to check that the above stated Feynman reproduce the same invariant
matrix element Mfi and, hence, the same scattering amplitude as derived in Section 4.4.

Example 3: Electron-electron scattering. As in Example 1 there are two Feynman dia-
grams to consider; again with a relative minus sign between the two terms because of the
anti-symmetrisation under the exchange of the two incoming (and outgoing) electrons.
Denote the incoming electrons by 1 and 2, and the outgoing ones by 3 and 4, hence the
amplitude must be anti-symmetric under the exchange 1 ↔ 2 and the exchange 3 ↔ 4.
Application of the Feynman rules yields:

Sfi =
(2π)4δ4(p3 + p4 − p1 − p2)√
2E1V

√
2E2V

√
2E3V

√
2E4V

[
−i

(p3 − p1)2
U(p3)(−ieγµ)U(p1)U(p4)(−ieγµ)U(p2)

− −i
(p1 − p4)2

U(p4)(−ieγµ)U(p1)U(p3)(−ieγµ)U(p2)

]
(4.93)

(picture goes here)

5 Relativistic Quantum Field Theory

5.1 Background

The first example of a classical field theory was electromagnetism as described by Maxwell

∂µFµν = jν , Fµν = ∂µAν − ∂νAµ . (5.1)

The first Quantum Field Theory (QFT) was the theory of the electromagnetic field Aµ(x).
Quantisation of the electromagnetic field by imposing commutation relations led to a par-
ticle interpretation in terms of photons. The quantised electromagnetic field Aµ becomes
an operator that can create and annihilate photons. In simple terms, the quantised field
can be viewed as an infinite collection of harmonic oscillators.

To begin with let us consider the simpler case of the Klein-Gordon field φ(x). The
main novelty here is that φ is treated as an operator rather than a wave function as we
did in RQM.
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5.2 Field Equations

To a field φ(x) we assign a Lagrangian density L(φ, ∂µφ), and the corresponding La-
grangian is

L =

∫
d3xL(φ, ∂µφ) . (5.2)

The action is then defined as

I =

∫ t2

t1

dtL =

∫ t2

t1

dt

∫
d3xL(φ, ∂µφ) . (5.3)

The field equations or Euler-Lagrange equations are given by Hamilton’s principle or
variational principle δI = 0 for arbitrary variations δφ of the field, with δφ = 0 at the
boundaries t = t1 and t = t2. For arbitrary variations of φ

δI = δ(

∫ t2

t1

dtL) = δ(

∫ t2

t1

dt

∫
d3xL(φ, ∂µφ))

=

∫ t2

t1

dt

∫
d3x [L(φ+ δφ, ∂µφ+ ∂µ(δφ))− L(φ, ∂µφ)]

=

∫ t2

t1

dt

∫
d3x

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
∂µ(δφ)

]
=

∫ t2

t1

dt

∫
d3xδφ

[
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

]
= 0 , (5.4)

where we dropped a boundary term coming from partial integration due to the boundary
condition on δφ. Since this must be true for arbitrary variation δφ we arrive at the field
equations

∂L
∂φ

= ∂µ
∂L

∂(∂µφ)
. (5.5)

5.3 The Neutral Klein-Gordon Field

Consider a Hermitian field operator φ(x) = φ†(x) which satisfies the Klein-Gordon equa-
tion

(∂µ∂
µ +m2)φ = 0 . (5.6)

Note that φ is an operator and NOT a wave function (which would not make much sense
since φ is Hermitian i.e. real now). The Klein-Gordon equation is the field equation
derived from the Lagrangian density

L =
1

2

(
∂µφ∂

µφ−m2φ2
)
. (5.7)
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Any solution of the KG equation can be decomposed in terms of positive and negative
energy plane wave solutions (complete set of eigenfunctions)

φ(x) =

∫
d3k

(
a+(k)f

(+)
k (x) + a−(k)f

(−)
k (x)

)
(5.8)

where f±k (x) = 1√
(2π)32Ek

e∓ik·x with Ek = +
√
~k2 +m2. If φ is Hermitian, φ† = φ, then

a−(k) = a†+(k). Write a+(k) ≡ a(k), a−(k) ≡ a†(k). Hence,

φ(x) =

∫
d3k

(
a(~k)f

(+)
k (x) + a†(~k)f

(−)
k (x)

)
. (5.9)

It can be checked that f±k (x) obey the orthonormality conditions

i

∫
d3xf

(±)
k (x)

←→
∂0 f

(±)
k (x) = 0

i

∫
d3xf

(∓)
k (x)

←→
∂0 f

(±)
k (x) = ±δ3(~k − ~k′) (5.10)

where A
←→
∂0B = A∂0B − (∂0A)B. With the help of these orthonormality conditions we

can calculate a and a† in terms of φ.

∫
d3xf

(+)∗
k′ (x)

←→
∂0 φ(x)

=

∫
d3k

(
a(k)

∫
d3xf

(+)∗
k′ (x)

←→
∂0 f

(+)
k (x)

+a†(k)

∫
d3xf

(+)∗
k′ (x)

←→
∂0 f

(−)
k (x)

)
=

∫
d3k a(k)(−iδ3(~k′ − ~k)) = −ia(k′) . (5.11)

Hence,

a(k) = i

∫
d3xf

(+)∗
k (x)

←→
∂0 φ(x) (5.12)

and similary by taking the Hermitian conjugate we find

a†(k) = −i
∫
d3xf

(−)∗
k (x)

←→
∂0 φ(x) . (5.13)

The theory is quantised by first introducing a generalised momentum (density) Π
conjugate to φ by

Π ≡ ∂L
∂φ

= ∂0φ = φ̇ . (5.14)
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In analogy to the QM commutation relation [p, x] = −i~ we impose the canonical com-
mutation relations

[Π(t, ~x), φ(t, ~x′)] = −iδ3(~x− ~x′) =
[
φ̇(t, ~x), φ(t, ~x′)

]
[φ(t, ~x), φ(t, ~x′)] = [Π(t, ~x),Π(t, ~x′)] = 0 . (5.15)

The corresponding commutation relations for a(k) and a†(k) can now be derived

[
a(k), a†(k′)

]
= i(−i)

∫
d3x

∫
d3y

[
f

(+)∗
k (x)

←→
∂0 φ(x), f

(−)∗
k′ (y)

←→
∂0 φ(y)

]
=

∫
d3x

∫
d3y

[
f

(+)∗
k (x)

∂

∂x0

φ(x)− ∂

∂x0

f
(+)∗
k (x)φ(x), f

(−)∗
k′ (y)

∂

∂y0

φ(y)− ∂

∂y0

f
(−)∗
k′ (y)φ(y)

]

=

∫
d3x

∫
d3y

−f (+)∗
k (x) [φ̇(x), φ(y)]︸ ︷︷ ︸

=−iδ3(~x−~y)

∂

∂y0

f
(−)∗
k′ (y)− ∂

∂x0

f
(+)∗
k (x) [φ(x), φ̇(y)]︸ ︷︷ ︸

=+iδ3(~y−~x)

f
(−)∗
k′ (y)


= i

[∫
d3xf

(+)∗
k (x)

∂

∂x0

f
(−)∗
k′ (x)−

∫
d3x

∂

∂x0

f
(+)∗
k (x)f

(−)∗
k′ (x)

]
= i

∫
d3xf

(+)∗
k (x)

←→
∂0 f

(−)∗
k′ (x)

= δ3(~k − ~k′) , (5.16)

hence, [
a(k), a†(k′)

]
= δ3(~k − ~k′) . (5.17)

Similarly,
[a(k), a(k′)] =

[
a†(k), a†(k′)

]
= 0 . (5.18)

Now write the Hamiltonian in terms of a and a†. Begin with the Lagrangian density

L =
1

2

(
(φ̇)2 − (~∇φ)2 −m2φ2

)
. (5.19)

Compare this with the Lagrangian L = T − V and Hamiltonian H = T + V in classical
mechanics. Therefore the Hamiltonian density is

H =
1

2

(
(φ̇)2 + (~∇φ)2 +m2φ2

)
. (5.20)

71



and the Hamiltonian is H =
∫
d3xH. Now,

φ̇ = −i
∫
d3kk0

(
f

(+)
k (x)a(k)− f (−)

k (x)a†(k)
)

~∇φ = i

∫
d3k~k

(
f

(+)
k (x)a(k)− f (−)

k (x)a†(k)
)

H =
1

2

∫
d3x

1

2

(
(φ̇)2 + (~∇φ)2 +m2φ2

)
=

∫
d3k

∫
d3k′

∫
d3x(−k0k

′
0 − ~k · ~k′)×

(
f

(+)
k f

(+)
k′ a(k)a(k

′)

+f
(−)
k f

(−)
k′ a

†(k)a†(k′)− f (+)
k f

(−)
k′ a(k)a

†(k′)− f (−)
k f

(+)
k′ a

†(k)a(k′)
)

+

∫
d3k

∫
d3k′

∫
d3xm2 ×

(
f

(+)
k f

(+)
k′ a(k)a(k

′)

+f
(−)
k f

(−)
k′ a

†(k)a†(k′) + f
(+)
k f

(−)
k′ a(k)a

†(k′) + f
(−)
k f

(+)
k′ a

†(k)a(k′)
)

(5.21)

Using the identities ∫
d3xf

(±)
k (x)f

(±)
k′ (x) =

1

2Ek

e∓2iEkx0

δ3(~k + ~k′)∫
d3xf

(±)
k (x)f

(∓)
k′ (x) =

1

2Ek

δ3(~k − ~k′) (5.22)

where Ek = +
√
~k2 +m2, we obtain

H =

∫
d3k

1

4Ek

(
a(k)a†(k) + a†(k)a(k)

)
(k2

0 + ~k2 +m2)︸ ︷︷ ︸
2E2

k

=

∫
d3k

Ek

2

(
a(k)a†(k) + a†(k)a(k)

)
. (5.23)

It is straightforward to check that

[H, a(k)] = −Eka(k)[
H, a†(k)

]
= −Eka

†(k) . (5.24)

Consequently, a and a† behave as the lowering and raising operators for the harmonic
oscillator! The vacuum state |0〉 is defined as the state for which a(k)|0〉 = 0 for all k.

Energy of the Vacuum

H =

∫
d3k

Ek

2
(a(k)a†(k) + a†(k)a(k))

=

∫
d3k

Ek

2
(2a†ka(k) + δ3(~0))

=

∫
d3kEka

†ka(k) +
1

2

∫
d3kEkδ

3(~0) (5.25)
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The first term acting on the vacuum gives zero, but the second term yields an infinite
vacuum energy. Since we are only interested in differences between energies, we subtract
off the infinite vacuum energy.

Thus, we replace the Hamiltonian H by its normal ordered counterpart H̃, which is
defined as

H̃ =

∫
d3kEka

†ka(k) , (5.26)

and leads to a vanishing vacuum energy

〈0|H̃|0〉 = 0 , (5.27)

because of the definition of the vacuum state!

The state obtained by m applications of a†(k) on the vacuum state has energy

Em = mEk . (5.28)

Therefore, we may interpret a† (a(k)) as operators creating (annihilating) quanta/particles
with four-momentum k.

5.4 Interactions

Also the Dirac field ψ can be quantised, now using anti-commutation relations instead
of canonical commutation relations. The free Lagrangian density for Dirac particles and
photons turns out to be

Lfree = ψ(iγµ∂µ −m)ψ − 1

4
FµνF

µν . (5.29)

Introducing the electromagnetic interaction by the usual ”minimal substitution”

∂µ → ∂µ + ieAµ (5.30)

we get

L = Lfree + LI = ψ(iγµ∂µ − eγµAµ −m)ψ − 1

4
FµνF

µν , (5.31)

where the interaction Lagrangian is given by

LI = eψγµAµψ . (5.32)

The detailed development of QFT leads in the end to the same Feynman rules as for
RQM. Notice the resemblance to Sfi = −ie

∫
d4xψf (x)γ

µAµ(x)ψi(x).

73



References

[1] J. Bjorken and S. Drell, ”Relativistic Quantum Mechanics” and ”Relativistic Quan-
tum Fields”, McGraw-Hill.

[2] M.E. Peskin and D.V. Schroeder, ”An Introduction to Quantum Field Theory”,
Addison-Wesley.

[3] S. Weinberg, ”The Quantum Theory of Fields”, Cambridge University Press.

[4] C. Itzykson and J.-B. Zuber, ”Quantum Field Theory”, McGraw-Hill.

[5] I.J. Aitchison and A.J. Hey, ”Gauge Theories in Particle Physics”, Adam Hilger.

[6] F. Mandl, ”Quantum Mechanics”, J Wiley.

[7] W. Greiner, ”Relativistic Quantum Mechanics: Wave Equations”, Springer-Verlag.

74


