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7.1 The growth and settling of dust grains

The basic idea of how planetary formation occurs involves the build-up of large, rocky
planetary cores/embryos by coagulation of the solid material in the protoplanetary
disc. Initially, this involves the sticking together of dust grains, that gradually begin
to settle towards the midplane of the disc as they grow. Dust then coagulates to form
planetesimals, which in turn grow through mutual accretion into planetary embryos
whose primary mode of growth is accretion from the planetesimal swarm.
We shall now consider the settling of dust grains towards the central plane of the
protoplanetary disc.
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We can estimate the settling time in a quiescent (non-turbulent) disc. The component
of the gravitational force in the z direction acting on a dust grain of mass mgr is

GM mgr z

r3

where M is the mass of the central star and r is the distance of the grain from the
star. We may approximate r ≃ R and use the Keplerian result that GM/R3 = Ω2,
where Ω is the angular velocity at the gas about the central star. The acceleration
towards the midplane of the disc due to gravity is therefore

gz = − Ω2z .

The dust will therefore fall towards the central plane when we view the system in a
rotating frame. As the dust grains move through the gas, the gas will exert a drag
force on the grains, resisting their fall to the central plane. As a result, the grains will
have a maximum velocity – their terminal velocity.
The drag force Fdrag acting on a spherical particle smaller than the mean free path of
gas molecules moving with a speed much smaller than the sound speed is

Fdrag = πa2ρ cs v

where a is the radius of the particle, ρ is the density of the gas, cs is the sound speed
of the gas and v is the velocity of the grain relative to the gas. The equation of motion
for a grain of mass mgr then becomes

mgr
dv

dt
= Fdrag + mgr gz .
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If the material of the grain has an internal density ρgr, this becomes

4πa3ρgr

3

dv

dt
= πa2ρ csv −

4π

3
a3ρgr Ω2z , (144)

where ρ is the gas density.
In practice, a grain will quickly reach the terminal velocity, so it will fall to the central
plane with the terminal velocity for most of its journey through the disc. From equation
(144), using the result that dv/dt = 0 when the terminal velocity is reached, we find
that the terminal velocity is

v =
4aρgr Ω2H

3ρcs

∼
4aρgr Ω

3ρ
∼

8aρgr ΩH

3Σ
(145)

where we have set z = H , used cs ≃ HΩ from equation (60), and have approximated
Σ = 2Hρ. The settling time to the central plane is

τs ∼ H/v ∼
3Σ

8aρgrΩ
∼

Σ

16aρgr

orbits . (146)

For Σ ∼ 102 g cm−2 = 103 kg m−2, ρgr ∼ 1 g cm−3 = 103 kg m−3, a = 10 µm = 10−5 m
we get τs ∼ 104 orbits = 105 yr at 5 AU.

As the grains settle towards the midplane of the disc, they collide with other grains,
stick together, and grow. Detailed calculations show that grains grow to centimetre
sizes once they reach the disc midplane, so that the solid material forms a dense
dust/pebble layer within the disc. Further collisions and coagulation between the solid
material within this layer causes continued growth, and current estimates suggest that
large objects with sizes of a >

∼ 1− 10 km may be formed on a time scale similar to the
grain settling time. Such objects are called planetesimals. Once such large objects have
been formed, the effect of gravitational focusing becomes important when calculating
the rate at which such objects collide to form larger objects.

7.2 Growth of planetesimals into planetary embryos

We will consider the growth of a large core from a background of smaller objects. Let
the core mass be mc, the core radius be Rc, the background object/planetesimal mass
be m, and the number density of background objects be n. The accretion rate is

dmc

dt
= n m v π R2

c

(

1 +
2Gmc

Rcv2

)

, (147)

where v is the velocity dispersion of the background objects. The term in brackets
1 + 2Gmc/(Rcv

2) on the r.h.s. of equation (147) is the gravitational focusing factor.
Consider the situation drawn in the diagram overleaf. An incoming object has

velocity v and impact parameter L. The condition for the object being accreted is
that it just grazes the accreting core, mc, so that its distance of closest approach must
be Rc. Conservation of energy requires the velocity of the object at closest approach
to be

√

v2 +
2Gmc

Rc
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and conservation of angular momentum requires that

L v = Rc

√

v2 +
2Gmc

Rc

so that

L2 = R2

c

(

1 +
2Gmc

Rcv2

)

.

L is now the effective radius for collisions, and leads to the expression (147) for the
mass accretion rate by the accreting core.

Let us now consider two different growth regimes, the so-called ‘orderly’ growth
and ‘runaway’ growth regimes.

First, let us suppose that 2Gmc/Rc ≃ v2, such that the growing planetary embryo
is responsible for stirring up the local planetesimal swarm (which it will do when it
becomes massive compared to the background planetesimals), then we can write:

dmc

dt
= 2nmπvR2

c . (148)

Writing the embryo radius in terms of its mass and density

R2

c =

(

3mc

4πρc

)2/3

we obtain
dmc

dt
= 2nmπv

(

3

4πρc

)2/3

m2/3

c . (149)

We can write the mass-doubling time scale as

τdouble = mc

(

dmc

dt

)−1

and we obtain τdouble ∝ m
1/3

c such that lower mass embryos will double their masses
on shorter time scales than larger embryos.

If we work in terms of the planetary embryo radius, Rc, then we can write

4πR2

cρc
dRc

dt
= 2nmπvR2

c (150)
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which simplifies to
dRc

dt
=

(

πnmv

2ρc

)

= constant. (151)

Thus we have that Rc ∝ t and the planetesimal radius grows linearly with time.
This is referred to as ‘orderly growth’, and occurs when the velocity dispersion of
the background planetesimals is high or comparable to the escape velocity from the
accreting embryo.

Let us now suppose that 2Gmc/Rc ≫ v2, so that the gravitational focusing factor
becomes important, then equation (147) may be approximated by

dmc

dt
= 2nmv

πRcGmc

v2
. (152)

If we write the embryo radius in terms of its mass and density then we get

dmc

dt
=

2πGnm

v

(

3

4πρc

)1/3

m4/3

c (153)

and we can see that the mass-doubling time

τdouble = mc

(

dmc

dt

)−1

∝ m−1/3

c . (154)

In this growth regime, the more massive an embryo is, the faster it doubles its mass.
This mode of growth is called ‘runaway growth’, because planetesimals which are
slightly more massive than their surrounding neighbours can grow very rapidly and
detach themselves from the background mass distribution. This is how a swarm of
planetesimals of initially similar masses can evolve into a system consisting of planetary
embryos embedded in a planetesimal swarm.

We now consider the growth time scale in the runaway growth regime in more
detail. We can write nm = ρs, the density of solids, in the disc and v ≃ HsΩ, where
Hs is the thickness of the solid layer. Equation (152) may now be written as

dmc

dt
=

πGΣsm
4/3

c

v2

(

3

4πρc

)1/3

Ω , (155)

where we have made the approximation ρs = Σs/(2Hs), where Σs = surface density of
solids, and have replaced the core radius Rc in terms of its mass, mc and density ρc.
Integrating equation (155) gives

3
[

m−1/3

c (0) − m−1/3

c (t)
]

=
πGΣsΩ

v2

(

3

4πρc

)1/3

t (156)

which shows that the time for the core to grow from an initial mass mc(0) to a larger
mass at time t, denoted by mc(t), depends inversely on the initial core mass. The
time required to grow to masses much larger than mc(0) may be approximated from
equation (156) to be

t ≃
3m

−1/3

c (0)

πGΣs

(

4πρc

3

)1/3

H2

s Ω (157)
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where we have used v = HsΩ. If we take the values ρc ∼ 1 gm cm−3 (103 kg m−3) and
Σs ∼ 1 gm cm−2 (10 kg m−2), (i.e. gas to dust ratio = 100), then we can write

t ∼ 1010

(

mc

mEarth

)−1/3 (

Hs

R

)2 (

M∗

M⊙

)1/2 (

R

R⊙

)1/2

years. (158)

Suppose that we have 10 km sized planetesimals with mc ≃ 1018 g = 1015 kg, and
further assume that the dispersion velocity of the planetesimals is equal to the escape
velocity from their surface (i.e. the planetesimal velocities are stirred by mutual grav-
itational interactions). In this case we find that Hs/R ∼ 10−4, and the growth time of
a core of similar mass in orbit around a solar mass star at 1 AU is

t ∼ 2 × 105 yr.

This number is significantly shorter than the expected life times of protostellar discs,
as required.

7.3 The isolation mass

How large can a planetary embryo grow by accreting from the surrounding planetesimal
swarm ? This question is answered by consideration of the feeding zone of an embryo,
defined to be the surrounding annulus in the disc from which it is able to accrete
planetesimals. The size of this annulus is set by the maximum distance over which
the planetary embryo’s gravity is able to perturb planetesimal orbits so that they can
collide. We define the half-width of this annulus by ∆amax = C.RHill where C is a
constant and RHill is the embryo’s Hill radius defined by

RHill = a

(

mc

3M∗

)1/3

.

The isolation mass is given by

miso = 2πa.2∆amax.Σs (159)

where Σs is the surface density of solids (planetesimals), a is the semimajor axis of the
embryo. Substituting for ∆amax gives

miso = 2πa.C.a

(

miso

3M∗

)1/3

.Σs, (160)

and solving for miso gives

miso =
√

8π3a3C3/2

(

1

3M∗

)1/2

Σ3/2

s . (161)

Detailed computation of the stability of planetesimal orbits perturbed by a planet gives
C = 2

√
3. Taking Σs = 100 kg m−2 at 1 AU gives miso = 0.07 M⊕, suggesting that

the terrestrial planets in our Solar System did not form by embryos simply accreting
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planetesimals in their feeding zones. At a distance of 5 AU, using the same solids
surface density Σs = 100 kg m−1, we obtain miso ≃ 9 M⊕. This is in reasonable
agreement with the estimated masses of the rock and ice cores at the centres of Saturn,
Uranus and Neptune. The situation with Jupiter is more uncertain since here the core
mass estimates are more sensitive to assumptions about the equation of state for
hydrogen under mega-bar pressures – which is not well-constrained.

7.4 Overview of terrestrial planet formation

We conclude a short discussion about terrestrial planet formation by summarizing
briefly the main stages of the process:

1. Dust particles agglomerate to form, eventually, planetesimals. Most likely this
occurs via pairwise collisions, though how (or whether) this process can work for
cm to meter scale particles remains somewhat murky. There may be a role for
gravitational instability.

2. Growth beyond planetesimals occurs via direct collisions, with an increasing role
for gravitational focusing as masses become larger. Dynamical friction keeps the
velocity dispersion of the most massive bodies low. Gas drag keeps the velocity
dispersion of the the planetesimals low. A phase of runaway growth occurs in
which a few bodies grow rapidly at the expense of the rest.

3. Runaway growth ceases once the largest bodies become massive enough to stir up
the planetesimals in their vicinity. A phase of oligarchic growth ensues, in which
the largest objects grow more slowly than they did during runaway growth, but
still more rapidly than small bodies. Growth continues in this mode until the
isolation mass is approached, at which point growth slows further.

4. Further evolution occurs as a result of collisions between the initially relatively
isolated planetary embryos left over after oligarchic growth. The embryos are
perturbed onto crossing orbits due to the influence of the giant planets and
mutual secular resonances. The final assembly of the terrestrial planets takes
around 100 Myr, with the predicted configuration varying depending upon the
assumed surface density of planetesimals and existence (or not) of giant planets.
In the Solar System, the final giant impact on the Earth is widely considered to
have given rise to the ejection of enough mass into orbit around the proto-Earth
to subsequently form the Moon. This lunar-forming impact has been dated to
have arisen at ∼ 60 Myrs after the formation of the Sun. This dating has been
achieved using the isotopic ratios of 186W and 182W (Tungsten). Early in the
history of the Solar system, radiative Hafnium 182Hf decays into 182W with a
half-life of 9 Myrs. 182Hf is considered to be a ‘lithophile’ element, which means
that if the Earth becomes completely molten it will remain in the Silicate mantle
and crust which forms on cooling. 182W on the other hand is considered to be a
‘siderophile’ element, meaning that it prefers to follow the heavy element iron as
it sinks to the centre of the Earth to form the core. By measuring the amout of of
182W to 186W in the Earth’s crust at the present time, it is possible to calculate
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the time after the formation of the Sun when the Earth was last molten - which
occured during the last lunar-forming giant impact.

The dominant uncertainties in theoretical models for terrestrial planet formation are
arguably found during stage 1 — the formation of planetesimals. It is also true that
most simulations of the late stages of terrestrial planet formation lead to planetary
eccentricities that are slightly larger than those observed in the Solar System. This
signals the need for additional dissipation at late epochs, possibly from the dynamical
effect of a surviving population of smaller bodies.

52


