
2 Lecture 2

2.1 Disc Formation via Cloud Collapse

The collapse of a cold cloud with no angular momentum (i.e. Ω = 0) would lead to the
formation of a compact, spherical star. If Ω 6= 0, however, then a protostellar disc is
formed. Such discs are now commonly observed in star forming regions of the Galaxy,
e.g. HST images of the propylids in the Orion nebula.
One can estimate the size of the disc that will be formed by considering the conser-
vation of angular momentum during the collapse of a protostellar cloud to form the
disc.
A gas cloud of radius Rc is initially rotating with an angular velocity Ω. The angular
momentum about the centre of the cloud of an element of gas of mass δm at the edge
is

J = δm R2

c Ω .

The specific angular momentum is the angular momentum per unit mass, and is there-
fore

j = J/δm = R2

c Ω (40)

for the gas at the edge of the cloud.
The cloud collapses under its own gravity to form a rotating protostellar disc.
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Let ω be the angular velocity of the gas at the edge of the disc, so that from equation
(1)

ω2 =
GM

R3
,

for a circular orbit about a central protostar of mass M . Consider a fluid element at
the disc edge with mass δm. The angular momentum of this element is

J = δm R2 ω . (41)

The specific angular momentum is therefore

j =
J

δm
= R2 ω =

√
GMR , (42)

for Keplerian motion.
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If the angular momentum is conserved during the collapse,

R2

c Ω =
√

GMRdisc

from equations (40) and (42). The radius of the disc therefore may be written

Rdisc =
j2

GM
. (43)

If we apply equation (43) to the collapse of a rotating cloud, then a cloud of mass
M ≃ 1 M⊙ ≃ 2 × 1030 kg is typically observed to have a radius of Rc ≃ 0.1 pc ≃
3 × 1015 m and an angular velocity Ω ≃ 10−14 rad s−1, giving j ≃ 1017 rad m2 s−1.
Thus the predicted radius of a protostellar disc forming from such a cloud will be
Rdisc ≃ 6×1013 m ≃ 400 AU. The collapse time τc for the cloud is given approximately
by the free-fall time τff ,

τc ≃ τff = π

√

R 3
c

8GM
≃ 5 × 105 yr (44)

if the initial cloud radius Rc ≃ 0.1 pc.

2.2 Disc Formation in Close Binary Systems

Here we introduce the concept of the Roche potential for binary stars in circular orbit.

m 1

D
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m 2
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We will work in a rotating reference frame based on the centre of mass of the
binary system. We will assume that the stars are located on the x–axis in this rotating
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coordinate system. The stars have masses m1 and m2, respectively, and have positions
x1 and x2 given by

x1 =
Dm2

(m1 + m2)
, x2 = − Dm1

(m1 + m2)
(45)

where D = the separation between the stars given by D = x1 − x2. The frame rotates
at the orbital angular velocity of the binary system given by

Ω2 =
G(m1 + m2)

D3
. (46)

We will consider a general point P with coordinates (x, y) in this reference frame and
calculate the gravitational and centrifugal potential at this position.

The gravitational potential due to the two stars is

Φgrav(x, y) = − Gm2
√

y2 + (x − x2)2
− Gm1

√

y2 + (x − x1)2
. (47)

The centrifugal potential is

Φcent(x, y) = −1

2
Ω2(x2 + y2) (48)

since the centrifugal acceleration is given by −∇Φcent = Ω2 r.
The total potential is then

Φ(x, y) = − Gm2
√

y2 + (x − x2)2
− Gm1

√

y2 + (x − x1)2
− 1

2
Ω2 (x2 + y2) . (49)

For a test particle placed in this rotating frame to be in equilibrium (i.e. no forces
acting on it), ∇Φ = 0. Positions where ∇Φ = 0 are known as Lagrange points, and
there are five such points all together which are usually labelled as L1 ... L5. The
diagram on page 16 shows the most important Lagrange point for the case of close
binary stars, namely the L1 point.
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We can consider the equipotential surfaces (also known as Roche equipotentials).
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2.2.1 Semi-detached Binary Star Systems with Compact Components

Classification of close binaries with respect to the critical lobe:

DETACHED

SEMI-DETACHED

CONTACT

In this course we will primarily focus on semi–detached systems since they are
the ones in which discs are likely to form via the process of Roche lobe overflow. Disc
formation can only occur if the detached component of these systems is fairly compact,
for reasons that are discussed later. The different types of semi–detached systems often
found in astrophysics are listed in table 1.

The Roche–lobe filling component can fill its critical lobe for two basic reasons.
First, the star may expand because of stellar evolution. Second, orbit shrinkage may
occur because of angular momentum loss due to stellar winds, tides, or gravitational
radiation, with the result being that the critical lobe itself shrinks in size until it is
filled by the star. Both of these basic scenarios lead to mass transfer through the L1
point, so that mass is transferred from the donor star to the compact companion.

The gas stream from the L1 point goes into a ring about m2, since the material
cannot fall directly onto m2 by virtue of its angular momentum. One can estimate the
size of the ring formed by consideration of the conservation of angular momentum.
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Name Compact Component Lobe Filling Component

Cataclysmic Variable (C.V.) White dwarf Low mass main sequence star
(Novae)
(Recurrent Novae)
(Dwarf Novae)

Low Mass X-ray Neutron star or Low mass main sequence star
Binary Black hole

X-ray Binary Neutron star or Early-type massive star
Black hole

Table 1: types of interacting binary stars.

Let the distance between the L1 point and m2 be a. The specific angular momen-
tum of material at L1 relative to m2 is j = a2Ω. If material flowing through the L1
point goes into circular orbit about m2 with radius R, then j =

√
Gm2R which follows

from equation (42). Equating these expressions leads to

a4Ω2 = Gm2R (50)

But since Ω2 = G(m1 + m2)/D
3 we find that

R =
(m1 + m2)

m2

a4

D3
(51)

For m1 = m2 (i.e. an equal mass binary system), a = D/2 and

R =
D

8
.

This illustrates the point that the mass-receiving component of the binary system
must be quite compact in order for a ring to form. So we expect that interacting
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binary stars that have an accretion disc will have a compact object, such as a white
dwarf, a neutron star or a black hole.

If angular momentum was conserved, material would stay in a ring without ex-
panding or accreting onto m2. In actual fact, discs are observed to expand to fill their
Roche lobes and contain spiral structure.
For example, IP Peg (a CV system) has been observed using the technique of Doppler
tomography which reveals the apparent existence of spiral density waves. (Note the
abbreviation CV to mean a cataclysmic variable star system.)

Accretion discs in close binary systems expand until they are truncated close to the
Roche lobe by the gravitational forces/torques due to the companion star m1. These
forces are also responsible for generating the spiral density waves.

The fact that discs only form when the accreting star is a compact object leads to
the expectation that if the lobe filling star is a main sequence star of mass ≃ 1 M⊙,
then the compact object must be a white dwarf (with radius ∼ 1 REarth), neutron star
(radius ∼ 10 km), or a black hole (radius of event horizon ∼ 3 km if M = 1 M⊙).

Expansion of the gas ring to form a lobe–filling disc requires angular momentum
transport to occur. The outer parts of the ring/disc must gain angular momentum in
order to move outwards, and the inner parts must lose it in order to move inwards and
accrete onto the compact object.
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