
3 Lecture 3

3.1 Accretion onto Compact Objects

Accretion of gas onto compact objects can provide a powerful energy source. In theory
one can obtain an amount

Em =
GM

R

of energy per unit mass by accreting onto a central mass M of radius R.
For neutron stars, Em ∼ 0.1c2 ∼ 1016 J kg−1.
For black holes, Em ∼ 0.1c2 ∼ 1016 J kg−1.

⇒ 10 percent efficiency of direct mass–energy conversion (E = mc2).
For white dwarfs GM

R
∼ 2.6 × 1013 J kg−1 (where M = 1 M⊙, R = 5 × 106 m).

For comparison, nuclear energy release by conversion of H → Fe gives Em ∼ 9 ×
1014 J kg−1. Thus, accretion onto compact sources can approach or exceed nuclear en-
ergy as a power source because compact objects have very deep gravitational potential
wells.

Infalling material will generally have some angular momentum, which means that
the material will usually go into orbit around the central object if the central object is
compact. The infalling material will form an accretion disc. Energy can be dissipated
in the accretion disc, in particular through viscosity in the gas, which heats the disc.
The hot disc will emit electromagnetic radiation as black body radiation, and this can
be powerful enough to be observed from the Earth. The disc is usually too small to
be resolved from the Earth, but the total radiation from the disc can be measured and
interpreted.

Accretion on to compact objects is observed in a number of circumstances. In
active galactic nuclei, gas forms an accretion disc around the supermassive black hole
in the nucleus of a galaxy. Examples include the nuclei of Seyfert galaxies, radio
galaxies, BL Lacertae objects and quasars.

Semi-detached interacting binary stars conventionally have accretion discs, as we
found in Chapter 2. The compact companion can be a white dwarf, a neutron star or
a black hole. Many interacting binary stars are observed within our Galaxy, usually
because of the energy emitted by the accretion discs. Their accretion discs in some
cases are so hot that they emit X-rays that can be observed by X-ray satellites (the
compact component must be a neutron star or black hole for the disc to be heated
this much). The emission from the accretion discs can vary strongly over time as the
rate that material moves through the accretion disc changes, and the corresponding
changes in brightness can be observed from the Earth. Cataclysmic variables (C.V.s)
have a white dwarf primary component and a less massive star that fills its Roche
lobe: gas spills from the lower mass star into an accretion disc around the white
dwarf. (Incidentally, the first C.V. known was discovered London in 1855 – from
Regent’s Park.)

As an example, consider accretion onto white dwarfs in C.V. (cataclysmic variable)
systems. A particular class of C.V. are the dwarf novae. These are typically composed
of a 1 M⊙ white dwarf and a 0.5 M⊙ main sequence star, and have orbital periods of a
few hours. Mass transfer through the L1 point occurs continuously, but accretion onto
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The above figure shows the light curve of the C.V. system SS Aurigae.
Notice the regular outbursts, typically lasting a few days, interspersed by
periods of quiescence, typically lasting periods of a few weeks or months.

the white dwarf occurs in outbursts. The outbursts occur every month or so, and have
a typical decay time of a few days. This is evidence that mass flows through the disc
on a time scale of a few days, which should be contrasted with the ∼ few hour orbital
period at the disc outer edge. The transport of mass through the disc thus occurs on
a time scale of ∼ 100 orbital periods at the disc outer edge. It is thought that the
outbursts are caused by an instability occurring in the disc, causing the viscosity to
vary as a function of time, thus inducing a time–dependent flow of matter onto the
central white dwarf.

3.2 Angular Momentum Transfer Mechanisms

While the gas in accretion discs moves in nearly circular orbits, there is also a slow
drift of material inwards. For this to occur, gas must lose angular momentum. This
angular momentum can be exchanged with other gas, or can be lost through torques
acting on the gas. Therefore angular momentum transport occurs. It is this transport
of angular momentum outwards that allows gas to drift inwards, and this transfer of
material produces the accretion. Without angular momentum transport, there would
be no transfer of gas inwards and therefore no accretion: the gas would remain in
stable circular orbits.

In this section we will briefly consider the mechanisms that are thought to be
responsible for angular momentum transfer in discs.
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3.2.1 Internal Disc Mechanisms - Viscosity/Friction
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In the diagram matter at A rotates faster than at D. Frictional forces tend to slow
it down due to interaction with the slower material exterior to it, while matter at D
speeds up. The net effect is that A loses angular momentum to D, so A moves inward
and D moves outward. Note that specific angular momentum in Keplerian orbit is
j =

√
GMR. The frictional effect is produced by viscosity acting in the disc. In order

to account for the evolutionary time scales of astrophysical discs the viscosity needs
to be large, and cannot be accounted for by the usual molecular viscosity. This has
led to the belief that the viscosity is generated by turbulence in the disc.

3.2.2 Other Mechanisms

(a) Global Magnetic Fields and Winds
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Disc Wind

In this scenario, a small amount of mass is lost in a wind that is launched from the
surface of the disc, and channelled along field lines. The coupling between the matter
leaving in the wind and the disc material itself, via the magnetic field lines, leads to a
torque being exerted on the disc, and angular momentum being removed. Young stars
in the process of forming are often observed to have associated collimated outflows
and jets, so this method of allowing accretion onto the central star may be important
during star formation.
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(b) Wave Transport

Waves can be excited within a gaseous accretion disc by an external companion and
lead to the transport of angular momentum. This process occurs through the tidal
interaction of the accretion disc and donor star in close binary systems at the disc
edge, and leads to the excitation of spiral density waves and disc truncation.

3.3 Viscous Disc Theory

In describing a viscous accretion disc, we will generally use cylindrical polar coordi-
nates (R, φ, z), and will assume that the disc is axisymmetric. We will denote the
semi-thickness (half-thickness) of the disc by H , and we will consider discs for which
H(R) ≪ R. We shall also assume Keplerian motion (the mass M of the central
star/object dominates). In general, we will work with the surface density, Σ which is
defined as

Σ(R) =

∫

∞

−∞

ρ(R) dz . (52)

3.3.1 Hydrostatic Equilibrium in the Vertical Direction
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The equation of hydrostatic equilibrium in the z direction is

1

ρ

∂P

∂z
= − GM

(R2 + z2)3/2
z , (53)

where P is the gas pressure and ρ the density at the point (R, φ, z). For a thin disc
(i.e. z ≪ R) this may be approximated as

1

ρ

∂P

∂z
= − GMz

R3
= − Ω2 z , (54)
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where Ω2 = GM/R3. If we assume the gas is isothermal at this distance R from
the centre, then P = RρT/µ is constant over z at this radius R, and equation (54)
becomes

1

ρ

R
µ

T
∂ρ

∂z
= −Ω2 z (55)

(T is the temperature, µ the molecular mass, and R the gas constant). Integrating
equation (55)

∫ ρ

ρ0

dρ

ρ
= − Ω2µ

RT

∫ z

0

z dz , (56)

where ρ0 is the midplane density (i.e. ρ at z = 0 for the particular value of R), which
evaluates to

ρ(z) = ρ0 exp

(

− z2

2H2

)

(57)

where

H2 =
RT

µΩ2
. (58)

The isothermal speed of sound in an ideal gas of temperature T is

cs =

√

RT

µ
(59)

where µ is the molecular mass, and R is the gas constant. This is the speed that
sound waves passing through the gas would have if the temperature of the gas did not
vary due to the temporary, sudden changes in pressure caused by the sound waves.
The adiabatic speed of sound, however, is a more realistic measurement of the actual
sound speed in the gas, and is given by

cs ad =

√

γ RT

µ

where γ is the ratio of specific heat capacities. Note that the differences between
the isothermal and adiabatic sound speeds are small because

√
γ ≃ 1 (for example,

γ = 1.67 for a monatomic gas, which gives
√

γ = 1.3).
Combining equations (58) and (59), we get

H2 Ω2 = c2
s . (60)

Here, cs is the isothermal sound speed. This gives us a very simple, but important,
relation between the half-thickness H(R) and angular velocity Ω(R) at a particular
distance R from the central star,

H Ω = cs (61)

(Remember that this applies to Keplerian discs in which the temperature is constant
with z. It applies at each R.)
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Calculating the surface density from equation (57) we have

Σ =

∫

∞

−∞

ρ dz =

∫

∞

−∞

ρ0 exp

(

− z2

2H2

)

dz = ρ0

√
2π H ,

which relates Σ to ρ0 and H (this uses the standard integral
∫

∞

0
exp(−x2/2σ2) dx =

σ
√

2π, because the integral of the Gaussian function cannot be expressed in terms of
any simple functions). Note that H/R = cs/(R Ω), so that we have a thin disc (i.e.
H/R ≪ 1) if the sound speed is small compared to the orbital velocity v = R Ω.

3.3.2 Viscous Evolution
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In the following analysis, we will use cylindrical polar coordinates (R, φ, z) and
assume that the fluid variables are independent of φ (i.e. the disc is axisymmetric).

Consider a ring with its inner edge at radius R and having thickness dR. We are
going to consider the viscous forces acting on this ring due to material in the disc lying
interior and exterior to it.

For a Newtonian Fluid, the ‘viscous stress’ is proportional to the velocity gradient,
so that the viscous stress is of the general form:

τ = η
dv

dx
,

where η is the coefficient of viscosity. This is the force per unit area acting in the fluid
due to the frictional effect of the viscosity restricting the deformation of the fluid (i.e.
that associated with the velocity shear within a differentially rotating disc). In general
we will use the kinematic viscosity, denoted as ν, and defined by

ν =
η

ρ
. (62)
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where ρ is the density of the fluid. From the definition of the viscous stress tensor in
the Navier-Stokes equation, it can be shown that the force per unit area acting on the
inner edge of the ring is

− ν ρ R
dΩ

dR
,

where it should be noted that this force is zero for a uniformly rotating fluid, as
required. Integrating vertically and azimuthally around the ring gives the total force
acting on the inner edge of the ring

Fin = − 2πR2ν Σ
dΩ

dR
. (63)

This force acts in the direction of rotation and is > 0, so the ring is accelerated. The
torque is

R Fin = − 2πR3 νΣ
dΩ

dR
. (64)

The torque acting at the outer edge (slowing the ring down) is

RFout =

[

2πR3νΣ
dΩ

dR

]

R+dR

. (65)

The net torque acting is the sum of equations (64) and 65)

T =

[

2πR3νΣ
dΩ

dR

]

R+dR

−
[

2πR3νΣ
dΩ

dR

]

R

=
∂

∂R

[

2πR3νΣ
dΩ

dR

]

dR . (66)

But the mass of the ring is 2πR Σ dR, so that the torque per unit mass is

Tm =
1

RΣ

∂

∂R

[

R3νΣ
dΩ

dR

]

. (67)

Now the torque per unit mass Tm = dj/dt, where j = R2 Ω(R) is the specific angular
momentum. It may be shown that

dj

dt
=

∂j

∂t
+ (v.∇)j (the convective derivative)

= vR
∂j

∂R
, (68)

in this case since j is a function of R only. Thus we have from equation (67)

vR
∂

∂R

(

R2Ω
)

=
1

RΣ

∂

∂R

[

R3νΣ
dΩ

dR

]

, (69)

using j = R2Ω for the specific angular momentum. Now we introduce the continuity
equation

∂ρ

∂t
+ ∇.(ρv) = 0 , (70)
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which may be written in cylindrical polar coordinates as

∂ρ

∂t
+

1

R

∂

∂R

(

RρvR

)

+
∂

∂z

(

ρvz

)

= 0 (71)

(where we have neglected the φ component because of the axisymmetry). Vertical
integration gives

∫

∞

−∞

∂ρ

∂t
dz +

∫

∞

−∞

1

R

∂

∂R

(

RρvR

)

dz +

∫

∞

−∞

∂

∂z

(

ρvz

)

dz = 0 .

Using equation (52) for Σ in terms of ρ,

∂Σ

∂t
+

1

R

∂

∂R

(

RΣvR

)

= 0 , (72)

where we have assumed vz = 0. From equation (69) we can write

R Σ vR =

[

∂

∂R

(

R2Ω
)

]−1
∂

∂R

[

R3νΣ
dΩ

dR

]

. (73)

Substituting this into equation (72) we obtain

∂Σ

∂t
+

1

R

∂

∂R

{

[

∂

∂R

(

R2Ω
)

]−1
∂

∂R

[

R3νΣ
dΩ

dR

]

}

= 0 , (74)

which is the well-known diffusion equation that governs the time evolution of surface
density Σ in a viscous accretion disc at a distance R from the central object.
For the Keplerian case Ω =

√

GM/R3 and

∂Σ

∂t
=

3

R

∂

∂R

[

R1/2 ∂

∂R

{

νΣR1/2
}

]

. (75)

An important issue is the timescale for changes in the surface density Σ. Equation (75)
for the rate of change of surface density, ∂Σ/∂t, in a Keplerian disc shows that that it
depends only on R, ν and Σ. The timescale, therefore, must depend only on R, ν and
Σ.
We can obtain a relation for the timescale τev of evolution in Σ using a dimensional
argument. R has dimensions of length L, the kinematic viscosity ν has L2T−1, Σ has
ML−2, and the timescale has T . So we expect

τev ∝ R2

ν
. (76)

Detailed theoretical modelling finds that

τev ≃ R2

3ν
. (77)
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Information about the timescale can be used to investigate the cause of the viscosity.
The kinematic viscosity ν has dimensions L2/T or Lv, where L =length, T =time,
v = velocity. Diffusion at the molecular level generates viscosity in fluids, and is called
molecular viscosity. For molecular viscosity, the appropriate length scale, L, is the
mean free path, and the appropriate velocity, v, is the sound speed cs (since this is
the characteristic velocity of molecules in a gas). Molecular viscosity acts because the
molecules in a gas have random motions which allow them to diffuse across shearing
interfaces in a fluid. The effect of this is to generate friction between adjacent regions
of the fluid that are moving relative to one another. It turns out, however, that
molecular viscosity is too small to explain the evolutionary time scales of accretion
discs, and that turbulence is thought to provide the required stresses in the fluid.
In disc theory we use an ‘alpha’ model for the kinematic viscosity, where L = H ,
v = cs and

ν = α cs H = α Ω2 H . (78)

The interpretation of this expression is that the viscosity is generated by turbulent
eddies with characteristic mean free path H and speed ∼ αcs.
α is an unknown parameter, and its determination requires a theory of turbulence.
Recent computer simulations of MHD (magnetohydrodynamic) turbulence in accretion
discs, however, suggest α ∼ 0.01 – 0.1.
Consider the disc evolution time given by equation (77)

τev ≃ R2

3ν
≃ R2

3αH2Ω
=

1

6πα

(

R

H

)2

orbits.

For C.V.’s, H/R ≃ 0.03, so that α ∼ 0.1 gives τev ∼ 500 orbits, which is similar to that
required for the explanation of the duration of outbursts of dwarf novae (see earlier).
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