
4 Lecture 4

4.1 Steady State Disc Theory

In the case of a steady state we have ∂Σ/∂t = 0 in equations (74) and (75), at all
points in the accretion disc.
Mass will flow inwards through the disc at a rate ṁd (mass per unit time) as angular
momentum is transported outwards. Considering mass conservation we have that

ṁd = − 2πRΣ vR (79)

which is the rate of mass flow through a circle of radius R, and is a solution to the
time-independent continuity equation (72).
From equation (69) we have that
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where we have used j = R2Ω. Substituting equation (79) into equation (80) we obtain
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Consider the steady–state diffusion equation from (74), with j = R2Ω,
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Integrating once gives
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where we have used equation (81) to evaluate the constant of integration, C. Integrat-
ing equation (83) gives

2πR3νΣ
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= − ṁd j + D , (84)

where D is a constant of integration.
D is usually calculated by considering the disc close to the star. In particular, we note
that if the disc is to join onto a non rotating, or slowly rotating star, then at a position
close to the star dΩ/dR = 0, such that no viscous stresses act at this point.
If we call Rmax the value of R where dΩ/dR = 0, Equation (84) becomes at this
position

D = ṁd R2

max Ω(Rmax) . (85)

If we assume that the disc is in Keplerian rotation at positions R & Rmax then we

have Ω(R) =
√

GM∗R
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where M∗ is the mass of the central star and G is the constant of gravitation. We
therefore obtain the expression
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However, the value Rmax of the R coordinate where the angular velocity Ω is a maxi-
mum is close to the radius of the star, R∗. So we shall approximate Rmax ≃ R∗. We
therefore get
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by inserting (87) into (84). Convince yourself that this is true by obtaining equation
(88).

4.2 Energy Production

We have a steady state solution for νΣ, but we are interested in accretion discs as
a source of energy production since ultimately we observe radiation that is emitted
from the disc surface. Energy production occurs via viscous dissipation. We will now
consider the rate of energy production due to viscous dissipation in an accretion disc.
The Navier-Stokes equation is
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where
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σij is known as the stress tensor. The first term on the r.h.s. of equation (90) is due
to the thermal pressure, and the remaining terms that are proportional to the velocity
gradients are due to the viscous stresses acting in the fluid. We have used suffix
notation where the subscripts i, j refer to the coordinate directions (e.g. in Cartesian
coordinates v1 ≡ vx, v2 ≡ vy, v3 ≡ vz). Each component of σij refers to the force per
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unit area acting in the direction i on a surface in the fluid whose normal points in the
j direction.

We will just consider the viscous part of the stress tensor, so that equation (89)
becomes
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To get the change in kinetic energy from equation (91) we take the dot product with
vi:
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from which we obtain
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The first term on the r.h.s. of equation (94) is due to the action of viscosity/friction
transferring momentum from one region of the fluid to another. There is a correspond-
ing transfer of kinetic energy associated with this momentum transfer. The second
term on the r.h.s of equation (94) is the rate of viscous dissipation per unit volume,
and gives the rate at which the viscous forces remove kinetic energy from the system
and convert it into heat/internal energy.
The rate of viscous dissipation per unit volume may be expressed as
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because σ′

ij is symmetric with respect to i and j (see equation (92)).
If we assume that ∇.v = 0 (as is the case here, as can be seen from the continuity
equation (9) for ρ = constant) then we can write
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where
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is the rate of strain tensor. In writing equation (96) we have used η = νρ. To obtain
the viscous dissipation per unit area we must integrate equation (96) vertically through
the disc
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where we have evaluated eij for the velocity field v = vφêφ = R Ω êφ, where êφ is
the unit vector in the φ direction. For a Keplerian disc in a steady state dΩ/dR =
−(3Ω)/(2R), giving

ǫD =
9

4
ν Σ Ω2 . (98)

We have now seen that the rate of heat generation in the disc due to viscous dissipation
of kinetic energy is given by

ǫD =
9

4
Ω2 ν Σ . (99)

Combining (99) and equation (88) we obtain the expression
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ṁd

[

1 −

(

R∗

R

)1/2
]

GM

R3
. (100)

The flux of radiation from an optically thick disc radiating as a black body is given by

F = 2σT 4

eff (101)

where the factor of 2 arises because the disc radiates from two sides. In a steady-state,
the energy dissipated = energy radiated, so equating expression (101) and (100) gives
an equation for the effective temperature as a function of radius
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Note that this expression is independent of the kinematic viscosity ν, indicating that
the temperature in an accretion disc is not sensitive to the physical process that
generates the viscosity, but only on the rate of mass flow through the disc that arises
because of it.
To make estimates of the temperature in accretion discs, we will ignore R∗ (since it is
usually small), so that

Teff ≃

[

3GMṁd

8πσR3

]1/4

. (103)

Numerically we can write

Teff = 6.6 × 104 K

(

ṁ

10−9M⊙/yr

)1/4(

M

M⊙

)1/4(

R

107m

)−3/4

. (104)

Apply to C.V.s:
For R ∼ 107 m, M ∼ 1 M⊙, ṁ ∼ 10−9 M⊙ yr−1, we obtain T ∼ 6 × 104 K, which is
typical of the values that apply to C.V.s. Most of the energy in this case is emitted in
the U.V.

Apply to Neutron Stars or Black Holes:
Here we take R ∼ 104 m. Note, however, in this case the accretion rate is limited by
the Eddington limit. During the process of accreting gas onto compact objects, the
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gas may become very hot and radiation pressure will then be important. For mass
accretion rates, ṁ, above a critical value (known as the Eddington limit), radiation
pressure dominates gravity, preventing further accretion. To obtain a simple estimate
of the Eddington limited accretion rate, consider the competition between radiation
pressure and gravity in a spherical cloud:

−
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−
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ρ
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> 0 (105)

if radiation pressure beats gravity, where Prad = aT 4/3. The luminosity is given by
L = 4πr2F where the radiative flux, F , is given by
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Thus we can write the luminosity as

L(r) = −
4πr2c

κρ

dPrad

dr
(107)

and equation (105) becomes

−
GM

r2
+

Lκ
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> 0 (108)

from which we get
κL > 4πc GM . (109)

The luminosity generated by mass accretion at a rate ṁ, onto an object of mass M
and radius R is given by

L =
GMṁ

R
. (110)

If we take the radius R ∼ 5RS, where RS = 2GM/c2 is the Schwarzschild radius, then

L = 0.1 ṁc2

which combined with (109) gives

ṁ =
4πcGM

0.1c2κ
=

40πGM

cκ
.

For electron scattering opacity (which is dominant in a hot ionised plasma), κ ≃
0.04 m2 kg−1 from electrons in ionised hydrogen giving

ṁ = 2 × 10−8 M yr−1 .

Taking this value, and R = 104 m in equation (104) gives Teff ≃ 2.5 × 107 K for
M = 1M⊙. Gas this hot radiates blackbody radiation of very short wavelength.
⇒ Expect X-rays to be emitted.
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Apply to Active Galactic Nuclei (AGN):
Take a massive black hole containing ∼ 108 M⊙, with R = 1012 m (Schwarzschild
radius). Here we get Teff ≃ 105 K, which is too low to explain the observed X-rays.
In this example, the model of a steady accretion disc with thermal emission does not
provide an accurate description of an AGN. It is probable that in this case much of
the energy is deposited in an optically thin corona above the disc from where it is
radiated (cf. the Sun’s corona).

Apply to Protostellar Discs:
Here we take ṁ ≃ 10−8 M⊙ yr−1, and R ≃ 1011 m (∼ 1 AU). This gives Teff ≃ 100K,
so that we expect most of emission from protostellar discs to be emitted in the infra-red
(as observed).
Thus, we have shown that astrophysical discs display a broad range of temperature
environments, ranging between 102 and 107 K.
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