
5 Lecture 6

5.1 Spectrum of Optically Thick Accretion Disc

Here we are going to calculate how the emitted power (luminosity) radiated from an
optically thick disc varies as a function of the emitted frequency, ν. Note that in
the following discussion, the symbol ν is used to denote the frequency of the emitted
radiation, and not the kinematic viscosity.
From equation (103) we have that the effective temperature at a point at a distance
R from the central object in an accretion disc is

Teff =

[

3GMṁ

8πσR3

]1/4

, (111)

where M is the mass of the central object, ṁ is the accretion rate on to the central
object, G is the constant of gravity (G = 6.673 × 10−11 m3 kg−1 s−2), and σ is the
Stefan constant (σ = 5.670 × 10−8 W m−2 K−4). This equation assumes that the
disc is Keplerian, it is in a steady state, angular momentum transport occurs due to
viscosity, and energy is liberated due to heating through viscous dissipation. It applies
for R ≫ R∗, the radius of the central object. We can write this as

Teff = β R−3/4 where β ≡
[

3GMṁ

8πσ

]1/4

(112)

is a constant for a particular disc.
From the Planck function we have that the flux emitted at a particular frequency ν
from a blackbody at a temperature Teff is

Fν =
2πhν3

c2

1

exp (hν/kTeff) − 1
, (113)

where c is the velocity of light (c = 2.9979 × 10−8 m s−1), h is the Planck constant
(h = 6.626× 10−34 J s−1), and k is the Boltzmann constant (k = 1.381× 10−23 J K−1).
This is written as Fν because it is the energy emitted per unit time per unit area of
the blackbody per unit frequency interval.
The power output from one side of the disc is

1

2
Lν =

∫ Rout

Rin

2πRFν dR

=

(

2π

c

)2

h

∫ Rout

Rin

ν3R

exp (hν/kTeff) − 1
dR , (114)

defining Lν to be the total luminosity per unit frequency interval from both sides of
the disc. Note that Teff ≡ Teff(R).
We now make a change of variable

x ≡ hν

kTeff
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so that

dx = d

(

hν

kTeff

)

=
d

dTeff

(

hν

kTeff

)

dTeff

dR
dR = − hν

kT 2
eff

dTeff

dR
dR .

Note that the limits of integration now change so that we use

xin =
hν

kTeff(Rin)
, xout =

hν

kTeff(Rout)
.

We will consider frequencies such that kTeff(Rout) ≪ hν ≪ kTeff(Rin), so that
xin −→ 0 and xout −→ ∞. In other words, we will consider frequencies that are
characteristically emitted from regions of the disc that are not at the hottest inner
part or coolest outer part. We can now write equation (114) in the form

1

2
Lν =

(

2π

c

)2

h

∫

∞

0

−
kT 2

eff

h

Rν2

exp (x) − 1

dR

dTeff

dx . (115)

We now write

− Teff

R

dR

dTeff
= − d lnR

d ln Teff
.

Taking the logarithm of equation (112) (i.e. lnTeff = ln(βR−3/4)) and differentiating,

− d ln R

d ln Teff
=

4

3
.

Equation (114) may now be written as

1

2
Lν =

4

3

(

2π

c

)2 ∫ ∞

0

kTeffR
2ν2

(exp x − 1)
dx . (116)

If we combine the expressions

x =
hν

kTeff
and Teff = βR−3/4

we can write

Teff R2 = β8/3

(

kx

hν

)5/3

.

Substituting this into equation (116) yields

1

2
Lν =

16π2

3c2
(βk)8/3h−5/3 ν1/3

∫

∞

0

x5/3

(exp x − 1)
dx (117)

which shows that the middle part of the spectrum of an optically thick accretion disc
is expected to show

Lν ∝ ν1/3 .

The diagram shows the expected change of Lν with ν, including the behaviour at both
large and small values of ν that we neglected from the above discussion.
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5.2 The Boundary Layer

Here we will consider the behaviour of the disc in the vicinity of the central star. The
region where the disc joins onto the central star is known as the boundary layer.
In a steady state disc at a distance R from the centre we have from equation (102)

σT 4

eff =
3GMṁ

8πR3

[

1 −
(

R∗

R

)1/2
]

. (118)

The total power radiated (the luminosity) is obtained by integrating the flux defined
in equation (118) over both surfaces of the disc giving

L = 2

∫

∞

Rmin

σT 4

eff . 2πR dR

assuming for convenience here that the disc extends from R = Rmin to ∞. (This is
the total energy emitted by the disc over all frequencies and over all the area of the
disc.) Therefore,

L = 4π

∫

∞

Rmin

σT 4

eff R dR =
3

2
GMṁ

∫

∞

Rmin

[

1

R2
− R

1/2
∗

R5/2

]

dR . (119)

This evaluates to

L =
3GMṁ

2

[

1

Rmin

− 2R
1/2
∗

3R
3/2

min

]

. (120)

If Rmin = R∗, the radius of the star, this becomes

L =
GMṁ

2R∗

. (121)

Note that GMṁ/(2R∗) is the power radiated in going from a circular orbit at ∞ to
a circular orbit at radius R∗. This is only half of the available energy, and the other
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half is stored as the kinetic energy of circular motion at radius R∗. If this material
is finally brought to rest, then an additional power of GMṁ/(2R∗) is available if the
destruction of the final rotational energy can occur in the boundary layer at radius
R∗, assuming that the central star is non-rotating. This could provide an additional
source of energy, such as the production of X-rays observed in C.V.s, or the production
of U.V. photons in T Tauri systems.

The liberation of this additional energy depends on the existence of a boundary
layer close to the star. However, it is possible that this boundary layer does not exist
if the disc is disrupted by a strong stellar magnetic field before the star is reached.

5.3 Disc-Magnetosphere Interaction
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Suppose that the central star has a strong magnetic field that threads through the
disc out to some radius. Further suppose that the star is rotating with angular velocity
ω, so that the frozen–in magnetic field also rotates at this rate. The field interacts
with the disc, and the more slowly rotating parts of the disc receive an outward torque
such that they are repelled from the central star.

Suppose that the star initially has an axisymmetric dipole field. If ω > Ω, then
poloidal magnetic field is converted into toroidal field, and a component of the field in
the azimuthal direction, Bφ, is produced. This arises because the more slowly rotating
disc drags the field lines back so that they become distorted.
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5.3.1 Estimate of Torque

The magnetic force per unit volume acting on the disc is given by equation (6)

f = j× B . (122)
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We need to take the φ component fφ in order to calculate the torque. In cylindrical
coordinates (R, φ, z), the component of j ×B in the φ direction is

fφ = (j ×B)φ = jzBR − jRBz , (123)

using the result in Appendix B2. Using Ampère’s Law (equation [7]) we obtain

µ0 jR =
1

R

∂Bz

∂φ
− ∂Bφ

∂z

µ0 jz =
1

R

∂

∂R
(RBφ) − 1

R

∂BR

∂φ
, (124)

and assuming that the field components are independent of φ, equation (123) becomes

fφ = (j× B)φ =
BR

µ0R

∂

∂R
(RBφ) +

Bz

µ0

∂Bφ

∂z
. (125)

The torque per unit volume at a distance R from the centre is given by

TV = R (j× B)φ =
BR

µ0

∂

∂R
(RBφ) +

RBz

µ0

∂Bφ

∂z
. (126)

For a thin disc, BR ≪ Bφ, Bz, so we make the approximation of neglecting the first
term in equation (126). To get the total torque, J̇ , we integrate over the disc volume
to get

J̇ =

∫ H

−H

∫

∞

Rmin

TV . 2πR dR dz =

∫ H

−H

∫

∞

Rmin

RBz

µ0

∂Bφ

∂z
2πR dR dz , (127)

where Rmin is the radius of the inner edge of the disc. Note that the total torque is
equal to the rate of change of the total angular momentum J̇ from Newton’s second
law. We now consider the vertical integration through the disc equation (127). We
will make the approximation that Bz ≃ constant through the disc. We will denote the
Bφ = B+

φ on the upper face of the disc and Bφ = B−

φ on the lower face of the disc.

From the diagram showing the distortion of the field lines, we can see that B+

φ = −B−

φ .
The vertical integration in equation (127) then yields

J̇ = 4π

∫

∞

Rmin

BzB
+

φ

µ0

R2 dR . (128)

In order to make a simple estimate, we will assume that B+

φ ≃ Bz, and also that the
magnetic field is dipolar so that

Bz(R) = Bz(R∗)

(

R∗

R

)3

where R∗ is the radius of the central star. The integral in equation (128) then evaluates
to

J̇ =
4π

3

B2
z(R∗)

µ0

R6
∗

R3
min

. (129)
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We estimate that the inner edge of the accretion disc occurs when the magnetic and
viscous torques balance. Taking the viscous torque acting on the inner edge of the
disc from equation (64) we obtain

J̇ = −
(

2πR3νΣ
dΩ

dR

)

Rmin

=
4π

3

B2
z (R∗)

µ0

R6
∗

R3
min

. (130)

But from equation (88) we have that ṁ ≃ 3πνΣ so that for a Keplerian disc equation
(130) becomes

ṁ R2

min Ω(Rmin) =
4π

3

B2
z (R∗)

µ0

R6
∗

R3
min

. (131)

Substituting Ω =
√

GM/R3 into equation (131) leads to the following expression for
the inner radius of the disc

Rmin

R∗

=

(

4π B2
z(R∗) R

5/2
∗

3
√

GM ṁ µ0

)2/7

, (132)

which can be written in terms of physical constants as

Rmin

R∗

= 50

(

Bz(R∗)

1 Tesla

)4/7(

R∗

R⊙

)5/7(

ṁ

10−8M⊙yr−1

)−2/7(

M

M⊙

)−1/7

. (133)

Thus, for a T Tauri star with ṁ = 10−8 M⊙ yr−1,
Rmin ≃ 50 R∗ if Bz(R∗) = 1 Tesla
Rmin ≃ 13 R∗ if Bz(R∗) = 0.1 Tesla

Thus Rmin is in the range 0.05 to 0.2 AU. Note that Rmin decreases with increasing
ṁ and decreasing Bz(R∗).

5.3.2 Equilibrium Rotation of Star

This occurs when Ω(Rmin) = ω, the disc rotation period at the inner radius is the
same as that of the star.
Why do we get equilibrium ?
If Ω(Rmin) > ω then the star will spin up.
If Ω(Rmin) < ω then the star will spin down.
The situation adjusts until equilibrium is attained with Ω(Rmin) = ω.
Consider a neutron star with M = 1 M⊙ accreting at a rate ṁ = 10−8 M⊙ yr−1, and
with radius R∗ = 1/(7 × 104) R⊙.
For a magnetic field flux density of Bz(R∗) = 108 Tesla, we get Rmin = 647 R∗. This
corresponds to an equilibrium period of 9 seconds, applicable to very young pulsars.
How to get millisecond pulsars ?

⇒ reduce Bz(R∗) to 102 Tesla. This reduces Rmin and gives an equilibrium period
of ∼ 3.36 milliseconds.
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