
6 Week 9

6.1 T Tauri Discs and the Minimum Mass Solar Nebula

T Tauri Discs: As we have seen in the accompanying power point slides, T Tauri
stars are very young, pre-main-sequence objects that show mass loss through winds
and also show accretion from surrounding discs. Observations indicate that T Tauri
discs have masses in the range 10−3 – 10−1 M⊙, and have accretion rates between
ṁ ∼ 10−9 M⊙ yr−1 – 10−7 M⊙ yr−1. This leads to expected lifetimes in the range 106

– 107 yr, in basic agreement with observations.

Mass distribution in the Solar System and Minimum Mass Solar Nebula:

Models of the protoplanetary disc that was the precursor to our own Solar System
often assume a surface density distribution of Σ ∝ R−3/2, which originates from the
current mass distribution of the planets as a function of their orbital radius. The
surface density of the minimum mass solar nebula model obeys
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If Σ ∝ R−3/2, then the disc mass as a function of radius scales as MD(R) ∝ R1/2.
For example, for Σ = Σ0R

−3/2 we have
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The surface density may the be written as

Σ(R) = Σ0R
−3/2 =

MD(R)

4πR2
. (135)

If we take a disc containing 10−2 M⊙ and of radius ∼ 40 AU, then at 5 AU

MD(5AU) = 10−2

√

5

40
∼ 3.5 MJ

where MJ = Jupiter’s mass = 0.0010M⊙.

T Tauri Discs compared with Minimum Mass Solar Nebula: To within order
of magnitude, T Tauri discs have properties similar to the minimum mass solar nebula.
Using equation (135), we find that the surface density at 5 AU in the minimum mass
solar nebula is Σ ∼ 160 g cm−2 = 1600 kg m−2). Temperatures are T ∼ 100 K at 5
AU, the mean molecular weight is µ ∼ 2, and so H/R ≃ cs/(RΩ) ∼ 0.04 – 0.05 (using
the result derived from equation 61).

6.1.1 Radial and vertical temperature profiles and the condensation se-

quence

We first consider the thermal structure of the protoplanetary disc in the vertical direc-
tion given our previous discussion about flared discs. We have the isothermal sound
speed given by

c2

s(R) =
R

µ
T (R) (136)
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Table 2: Condensation temperatures for selected materials
T Material

1680 K Al2O3

1590 K CaTiO3

1400 K MgAl2O4

1350 K Mg2SiO4, iron alloys
370 K Fe3O4

180 K water ice
130 K NH3 · H2O

40 K – 80 K methane, methane ices
50 K argon

and from our previous discussion about vertical structure in accretion discs H/R =
cs/vk where vk is the Keplerian velocity. A steady state disc viscously evolving disc
has an effective temperature

Teff =
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3GMṁ

8πσR3

)1/4

(137)

so we can write T (R) = T0R
−3/4. For the sound speed we have
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−3/4 (138)

which gives for the disc aspect ratio
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R1/8. (139)

Thus we see that viscously heated discs are expected to flare slightly. This means that
the disc at large radius will intercept a greater amount of radiation from the central
star, which will have the effect of making the radial temperature profile somewhat
shallower than the standard R−3/4 power-law.

The protoplanetary disc will be composed of gas and dust grains whose mass ratio
is expected to be ≃ 100 : 1. Planets are formed by the growth of the small dust grains
up to planetary sized bodies. The variation of temperature within the protoplane-
tary disc as a function of distance from the central star allows various elements and
compounds to condense into solids from the gas/vapour phase, so the local ratio of
gas to solids will vary with distance to the central star. The temperature at which a
chemical substance condenses into solid form is called the condensation temperature.
Calculations of the abundance of solids in the disc requires the computation of the full
equilibrium chemistry for a gas with a particular elemental abundance, at tempera-
tures and densities (pressures) which are appropriate to protostellar discs. Substances
with low condensation temperatures are usually referred to as ‘volatiles’, and those
with high condensation temperatures are ‘refractories’. The table shows the conden-
sation temperatures of some important compounds that can form either ice grains or
dust grains.
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The radial location of the disc midplane where the temperature drops below ≃ 160
K is called the ‘snow line’, as this is where water ices are expected to form. At this
location the surface density of solids Σs increases by about a factor of 4 above its
nominal value due to the formation of ice grains.

If we naively calculate the temperature in a disc using equation (104) using ṁ =
10−8 M⊙/yr we obtain 86K at 1 AU. Adopting ṁ = 10−7 M⊙/yr gives ∼ 150 K at
1 AU. These estimates suggest that the snow line in the Solar System was at ≤ 1
AU, but meteoritic evidence suggests that the water content of asteroids increases out
beyond about 3 AU. The original minimum mass solar nebula model has a snow line
at 2.7 AU.

The effective temperature estimate we have used is really the temperature at the
surface of the disc, since this is the temperature that the emitting surface of a black-
body has as it emits radiation into free space. The midplane temperature is expected
to be significantly higher. If the disc is optically thick in the vertical direction, and
heat is transported from the midplane to the disc surface via radiation, then the flux
is given by:

F (z) = −
16σT 3

3κRρ

dT

dz
(140)

where the optical depth from the midplane to surface is given by

τ =
1

2
κRΣ

and κR is the Rosseland mean opacity. Let us assume that essentially all viscous
dissipation occurs in the disc midplane (z = 0, i.e. this is where all disc heating
occurs). Then the flux is constant with height. At the surface of the disc it is given
by F (z) = σT 4

eff , thus we can write

−
16σT 3

3κRρ

dT

dz
= σT 4

eff (141)

which can be integrated (assuming constant opacity) to give
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If we assume that the midplane temperature Tc is significantly higher that the effective
temperature at the surface (Tc >> Teff ) then we obtain

T 4
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3τ

4
T 4

eff . (143)

For most discs we expect τ ≥ 100 so that Tc ≃ 3Teff . Thus we see that the location
of the snow line can move out to larger radii, and this effect can be increased further
by taking into account the absorption of radiation from the central star by the disc.
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