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This paper has two Sections and you should attempt both Sections. Please read care-
fully the instructions given at the beginning of each section.

Calculators are NOT permitted in this examination. Numerical answers where re-
quired may be determined approximately, to within factors ∼ 5, or left in terms of
trigonometric or other transcendental functions.

You may quote the following results unless the question specifically asks you to derive
it. All notation is standard. Vectors are denoted by boldface type, e.g., A, while
scalars, including the magnitude of a vector, are in italics, e.g., |E|= E.

(i) The Lorentz force on a particle of charge q moving in electric and magnetic fields
E and B respectively is given by

F = q(E+v×B)

(ii) Maxwell’s Equations

∇×E = −
∂B
∂t

∇×B = µ0j+
1
c2

∂E
∂t

∇ ·E =
ρq

ε0
∇ ·B = 0

where µ0ε0 = 1/c2.

(iii) The electric and magnetic fields E and B as measured in a laboratory frame are
related to the fields E′ and B′ measured in a frame moving relative to the laboraty
frame at a velocity u by the transformation laws

E′‖ = E‖
B′‖ = B‖

E′⊥ =
E⊥+u×B√

1− (u2/c2)
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B′⊥ =
B⊥−

u×E
c2√

1− (u2/c2)

(iv) The MHD equations for a plasma with electrical conductivity σ:

∂ρ

∂t
+∇ · (ρV) = 0

ρ

(
∂

∂t
+V ·∇

)
V = −∇p+

1
µ0

(∇×B)×B(
∂

∂t
+V ·∇

)(
pρ

−γ
)

= 0

∂B
∂t

= ∇× (V×B)+
1

µ0σ
∇

2B

E+V×B = j/σ

(vi) The following vector identities and relations

∇× (a×b) = a(∇ ·b)+(b ·∇)a−b(∇ ·a)− (a ·∇)b

(∇×B)×B = (B ·∇)B−∇

(
B2

2

)
∇× (∇×B) = ∇(∇ ·B)−∇

2B
a× (b× c) = (a · c)b− (a ·b)c
(a×b)× c = (a · c)b− (b · c)a

(vii) The following numerical values of physical constants and parameter values:

Name symbol value

Electronic Charge e 1.6×10−19 C
Electron volt eV 1.6×10−19 Joules
Electron mass me 9.1×10−31 kg
Proton mass mp 1.67×10−27 kg
Permeability of free space µ0 4π×10−7 Henry/m
Permittivity of free space ε0 8.85×10−12 Farad/m
Speed of light in vacuo c 3×108 m/s
Earth Radius Re 6371 km
Astronomical Unit AU 1.5×1011 m
Solar Radius R� 6.96×108m
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SECTION A

Each question carries 10 marks. You should attempt ALL questions.

1. Explain what is meant by “magnetic reconnection,” and why it is important. Draw a diagram
of the Sweet-Parker model of reconnection. Include on your diagram indications of the
magnetic field and bulk velocity vectors in all regions of space, and the location of the
diffusion region. What disadvantage does this model have for explaining energy release in
astrophysical plasmas?

2. A particle of mass m and charge q moves non-relativistically in static, uniform electric and
magnetic fields E ≡ Eoŷ and B ≡ Boẑ. By solving the equation of motion for the particle
velocity, or otherwise, show that the motion consists of a constant z-velocity, cyclotron mo-
tion around B, and a uniform drift. What direction is the drift and how does it depend on the
sign of the charge q? Explain qualitatively how curvature of the magnetic field lines, in the
absence of an electric field, can lead to a uniform drift.

3. Derive the MHD induction equation for ∂B/∂t for a non-relativistic plasma. Define the
Magnetic Reynolds number Rm. Explain how it is related to the MHD induction equation
and describe the limiting behaviour of plasmas with small and large values of Rm.

4. Some comets have two tails: a dust tail and a gas tail. What evidence can be deduced from
the gas tail for the existence of a supersonic solar wind? Explain what is meant by MHD
“flux freezing” and illustrate how it can be used to explain the behaviour of the magnetic
field lines in the vicinity of a comet. Illustrate your answer with a sketch.

5. Define the magnetic moment µ of a charged particle; give both the standard definition and
the definition in terms of the particle pitch angle α and kinetic energy W . What important
property does µ have, and under what conditions?

A spacecraft above the Earth’s magnetic pole fires charged particles of energy 5 keV towards
the ionosphere. The magnetic field above the pole can be approximated by B ≈ 107/r3,
where r is distance from the centre of Earth. The spacecraft is at a distance of r = 21,000
km.

What approximate range of pitch angles should the particles be released at in order to reach
the top of the ionosphere at r = 7000 km?

[Assume the particle energy is constant. Use the small angle approximation sinα≈ α, for α

in radians.]
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SECTION B

Each question carries 25 marks. You may attempt all questions but only marks for the
best TWO questions will be counted.

1. Consider a perpendicular, time-steady shock, in a frame in which the shock is stationary in
the plane x = 0, with an upstream flow velocity V =−V x̂, and a uniform upstream magnetic
field B = Bẑ. The normal to the shock surface points upstream n̂ = x̂, so that the upstream
region has x > 0.

(a) [2 marks] Assuming ideal MHD, what is the upstream electric field E? Give your
answer in component form.

(b) [14 marks] A particle of mass m and charge q hits the shock with exactly the upstream
flow velocity, and is then reflected specularly, i.e., it reverses its component of velocity
normal to the shock.
From the particle’s equation of motion, obtain an analytic solution for the velocity u
and position x in component form, assuming an initial position of (0,0,0). Assume
that the magnetic and electric fields are uniform throughout the particle’s motion. Use
the definition Ω = qB/m.

(c) [5 marks] Describe briefly with a sketch the particle’s motion after reflection. Derive
the following expression for the maximum distance that a reflected particle reaches
upstream:

xmax =
V
Ω

(√
3− π

3

)
(d) [4 marks] Describe briefly the overall magnetic field structure of a high Mach number

perpendicular shock as observed in space. What is the role of reflected ions at such
shocks, and how do they influence the structure?

2. For a uniform static plasma obeying the ideal MHD equations, consider the propagation of
small amplitude waves with wave vector k.

The background plasma has mass density ρ0, magnetic field B0 = B0ẑ, pressure p0, and
sound speed given by c2

s = γp0/ρ0.

(a) [5 marks] By substituting V = V1, B = B0 + B1, etc., (where quantities, subscript 1,
are linear perturbations on the equilibrium state, subscript 0) show that the linearized
MHD equations take the form:

∂ρ1

∂t
+ρ0∇ ·V1 = 0 (1)

ρ0
∂V1

∂t
= −∇p1 +

1
µ0

(∇×B1)×B0 (2)
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∂B1

∂t
= ∇× (V1×B0) (3)

p1 = c2
s ρ1 (4)

(b) [10 marks] Assuming plane wave solutions of the form Q1 = δQei(k ·x−ωt), find the
equation for the perturbed quantity δV in terms of the wave properties k and ω and the
background quantities.

(c) [5 marks] For waves propagating perpendicular to the background magnetic field, i.e.,
with k ⊥ B0, show that there exists a wave with δVz = 0 and δV ‖ k, which has the
dispersion relation

ω
2 = k2(c2

s + v2
A)

where v2
A = B2/(µ0ρ0).

(d) [5 marks] For this wave mode, show that variations in both the total magnetic field B
and density ρ are compressive, and that they are in phase.

3. A simple model of the solar wind can be derived assuming that the solar corona, described
as an isothermal gas obeying the ideal gas pressure law p = 2nkBT , undergoes a steady-state,
spherically symmetric and purely radial expansion. The mass density and number density
are related by ρ = nm, where m is the mean mass of a particle. Neglect the magnetic field.

(a) [12 marks] Show that the outflow speed V , as a function of radius r, is governed by:(
V 2− 2kBT

m

)
1
V

dV
dr

=
4kBT
mr

− GM�
r2

Ensure that you state clearly any additional assumptions you make.

(b) [3 marks] Verify that the following is a solution of this equation:

1
2

V 2− 2kBT
m

lnV =
4kBT

m
lnr +

GM�
r

+K

where K is constant.

(c) [5 marks] The solar wind solution has an outflow speed Vc at the critical radius rc such
that both sides of the first equation are zero. Determine rc and Vc, and comment on the
special property of the outflow speed at this point.

(d) [5 marks] Use your values of rc and Vc to determine K. Hence obtain an approximate
form of the solar wind solution at large heliocentric distance where r� rc and V �Vc.
Explain why the behaviour of this solution as r increases is unphysical.
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4. Consider a one-dimensional, steady state, shock at which the x axis is taken parallel to the
unit shock normal vector n̂, such that all quantities depend only on x. The jump across the
shock for any quantity X is written as [X ] = Xu−Xd , where the subscripts u and d refer to the
upstream and downstream values, respectively. For a time-steady, one-dimensional shock,
the condition ∂X/∂x = 0 implies [X ] = 0.

The magnetic field and velocity vectors can be split into components normal and parallel to
the shock surface. For example,

B = Bxn̂+Bt ,

where Bt is the transverse component vector, and Bx is the normal component.

(a) [4 marks] Using Maxwell’s equations and the one-fluid MHD equations, show that

[Bx] = 0
[ρVx] = 0

(b) [8 marks] From the tranverse component of the MHD momentum equation (without
gravity), and using the results above, deduce the jump condition:[

ρVxVt −
Bx

µ0
Bt

]
= 0.

(c) [10 marks] A further jump condition is

[VxBt −BxVt ] = 0.

(You need NOT prove this.)
Using these jump conditions show that the upstream and downstream transverse com-
ponents of the magnetic field are parallel, i.e., that Bdt = αBut where α is a non-zero
scalar. Hence, show that

n̂ · (Bu×Bd) = 0

i.e., that the three vectors n̂, Bu and Bd are coplanar.

(d) [3 marks] From the previous result, and the further result (which you do not need to
prove)

n̂ · (Bu−Bd) = 0

explain why the vector
N = (Bu×Bd)× (Bu−Bd)

can be used to determine the shock normal from the measured upstream and magnetic
field vectors.

6 [End of examination paper]


