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10.1. Asymptotic behavior of the solution of Friedman equation

Let us write down the Friedman equation in the following form (see Eq 4 of Lecture
9)

Ṙ2 = c2

(
R∗

R
− k

)
, (1)

where

R∗ =
8πGρ0R

3
0

3c2
. (2)

To solve the Friedman equation let us use the method of separation of the variables:(
dR

dt

)2

= c2

(
R∗

R
− k

)
, (3)

dR

dt
= ±c

√
R∗

R
− k. (4)

We should take ”+” here because we deal with an expanding rather than a contracting
Universe.

dt = +
dR

c
√

R∗
R − k

. (5)

t =
1
c

∫ R

0

dR′√
R∗
R′ − k

. (6)

Let us consider the asymptotic behavior of the Friedman equation and its solution for
small R, i.e in the beginning of the expansion of the Universe when

R∗

R
� |k|, i.e. R� R∗

|k|
. (7)

If k = 0 this inequality is always valid. If k 6= 0 asymptotically the Friedman equation
is the same as in the case k = 0.

This asymptotic solution can be easily found, indeed:

t =
1
c

∫ R

0

dR′√
R∗
R′

=
1

cR
1/2
∗

∫ R

0

R′1/2dR′ =
2R3/2

3cR
1/2
∗

, (8)

hence the asymptotic solution goes as

R ∼ t2/3, if R� R∗

|k|
. (9)
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10.2. Parametric solution of the Friedman equation with k 6= 0

The following relationships between between hyperbolic and trigonometric functions
help a lot with solving the Friedman equation in the case when k 6= 0:

sinx =
eix − e−ix

2i
(10)

cos x =
eix + e−ix

2
(11)

sinhx =
ex − e−x

2
(12)

coshx =
ex + e−x

2
(13)

hence

sin(ix) =
ei(ix) − e−i(ix)

2i
=

e−x − ex

2i
= −ex − e−x

2i
= −1

i
sinhx = i sinhx (14)

cos(ix) =
ei(ix) + e−i(ix)

2
=

e−x + ex

2
=

ex + e−x

2
= cosh x (15)

then

cosh2 x− sinh2 x = cos2(ix)−
(

sin(ix)
i

)2

= cos2(ix) + sin2(ix) = 1. (16)

Returning back to Eq. 6, we can use the following substitution:

R(η) =
R∗

k
sin2

√
kη

2
=

R∗

2k
(1− cos

√
kη), (17)

where η is a new variable. We should not worry that the argument x =
√

kη could
be a complex number because all sines and cosines can be expressed in terms of the
hyperbolic functions of a real argument.
Then we have

t =
R∗
√

k

2kc

∫ η

0

sin
√

kη′dη′√
R∗k

R∗ sin2
√

kη′
2

− k
=

R∗

2kc

∫ η

0

dη′F (
√

kη′), (18)

where

F (x) =
sinx√
1

sin2 x
2
− 1

=
2 sin x

2 cos x
2 sin x

2√
1− sin2 x

2

= 2 sin2 x

2
= 1− cos x. (19)
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Hence

t =
R∗

2kc

∫ η

0

dη′(1− cos
√

kη′) =
R∗

2kc
(η − sin

√
kη√

k
). (20)

Finally we have obtained the solution of Friedman equation in the following parametric
form:

R =
R∗

2k
(1− cos

√
kη), (21)

t =
R∗

2kc
(η − sin

√
kη√

k
). (22)

10.3. Three types of Newtonian cosmological models and the fate of the
Universe

Thus according to Newtonian theory, there are three types of cosmological models:

1) k = 0 Ω0 = 1,
2) k = −1 Ω0 < 1,
3) k = 1 Ω0 > 1, .

(23)

Let us consider all these models separately.

(i) k = 0.

In this case the asymptotic solution obtained in section 10.1 is always valid and we
have explicit solution

t =
2R3/2

3cR
1/2
∗

, R = R∗

(
t

t∗

)2/3

, (24)

where

t∗ =
2R∗

3c
. (25)

From the mass conservation equation (see the previous lecture) using Eqs. (2) and
(24), we obtain the following expression for ρ:

ρ = ρ0

(
R0

R

)3

= ρ0

(
R0

R∗

)3 (
t

t∗

)−2

=
4

9c2
ρ0R

3
0(R∗)−1t2 =

1
6πGt2

. (26)
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(ii) k = −1.

Let us now consider the model with k = −1. From the parametric solution obtained
in the previous section we have

R =
R∗

−2
(1− cos iη), (27)

t =
R∗

−2c
(η − sin iη

i
, (28)

From Eqs (14) and (15) we obtain

R =
R∗

2
(cosh η − 1), (29)

t =
R∗

2c
(sinh η − η). (30)

If R→∞ the parameter η also goes to infinity and

R ≈ R∗

2
eη

2
, (31)

t ≈ R∗

2c

eη

2
, (32)

Thus if R� R∗ we have another explicit asymptotic solution

R = ct, (33)

which corresponds to the asymptotically free expansion of the Universe, i.e. with
an asymptotically vanishing deceleration. In other words the model with k = −1
expands in the future for ever, asymptotically approaching the so called Milne solution
describing the expansion of an empty Universe.

(iii) k = 1.

In the case k = 1 the performance of the solution is drastically different:

R =
R∗

2
(1− cos η), (34)

t =
R∗

2c
(η − sin η). (35)

We can see that R attains maximum at η = π and then the Universe will start to
contract until R = 0. This is called the Big Crunch.
The behavior of all three cosmological models predicted by the Newtonian theory are
summarized in (Fig. 10.1.


