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16.1. Parallel transport

In Special Relativity if Ai is a vector dAi is also a vector ( the same is valid for any
tensor). But in curvilinear coordinates this is not the case:

Ai =
∂x′k

∂xi
A′

k dAi =
∂x′k

∂xi
dA′

k + A′
k

∂2x′k

∂xi∂xl
dxl, (1)

thus dAi is not a vector unless x′k are linear functions of xk ( like in the case of Lorentz
transformations).
Let us introduce another very useful notation:

, i =
∂

∂xi
(2)

According to the principle of covariance we can not afford to have not tensors in any
physical equations, thus we should replace all differentials like

dAi and
∂Ai

∂xk
≡ Ai,k (3)

by some corrected values which we will denote as

DAi and Ai;k (4)

correspondingly.

In arbitrary coordinates to obtain a differential of a vector which forms a vector we
should subtract vectors in the same point, not in different as we have done before.
Hence we need produce a parallel transport or a parallel translation.
Under a parallel translation of a vector in galilean frame of reference its component
don’t change, but in curvilinear coordinates they do and we should introduce some
corrections:

DAi = dAi − δAi. (5)

These corrections obviously should be linear with respect to all components of Ai and
independently they should be linear with respect of dxk, hence we can write these
corrections as

δAi = −Γi
klA

kdxl, (6)

where Γi
kl are called Christoffel Symbols which obviously don’t form any tensor, be-

cause DAi is the tensor while as we know dAi is not a tensor.
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16.2. Covariant derivatives and Christoffel Symbols

In terms of the Christoffel symbols

DAi = (
∂Ai

∂xl
+ Γi

klA
k)dxl = (Ai

,l + Γi
klA

k)dxl, (7)

DAi = (
∂Ai

∂xl
− Γk

ilAk)dxl = (Ai,l − Γk
ilAk)dxl, (8)

Ai
;l =

∂Ai

∂xl
+ Γi

klA
k = Ai

,l + Γi
klA

k, (9)

Ai;l =
∂Ai

∂xl
− Γk

ilA
k = Ai,l − Γk

ilA
k. (10)

To calculate the covariant derivative of tensor start with contravariant tensor which
can be presented as a product of two contravariant vectors AiBk. In this case the
corrections under parallel transport are

δ(AiBk) = AiδBk + BkδAi = −AiΓk
lmBldxm −BkΓi

lmAldxn, (11)

since these corrections are linear we have the same for arbitrary tensor Aik:

δAik = −(AimΓk
ml + AmkΓi

ml)dxl (12)

DAik = dAik − δAik ≡ Aik
; ldxl, (13)

hence

Aik
; l = Aik

,l + Γi
mlA

mk + Γk
mlA

im (14)

In similar way we can obtain that

Ai
k; l = Ai

k,l − Γm
klA

i
m + Γi

mlA
m
k , and Aik; l = Aik,l − Γm

il Amk − Γm
klAm, i. (15)

In the most general case when we have tensor of m+n rank with m contravariant and
n covariant indices the rule for calculation of the covariant derivative with respect to
index p is the following

Ai1 i2 ... im
j1 j2 ... jn ; p = Ai1 i2 ... im

j1 j2 ... jn , p + Γi1
kpAk i2 ... im

j1 j2 ... jn
+ Γi2

kpAi1 k ... im
j1 j2 ... jn

+ ... + Γim

kpAi1 i2 ... k
j1 j2 ... jn

− (16)

− Γk
j1 pAi1 i2 ... im

k j2 ... jn
− Γk

j2 pAi1 i2 ... im

j1 k ... jn
− ... − Γk

jn pAi1 i2 ... im

j1 j2 ... k . (17)
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16.3. The Relation of the Christoffel Symbols to the Metric Tensor

So far we don’t know how the Christoffel symbols depend on coordinates, however we
can prove that they are symmetric in the subscripts. Let some covariant vector Ai is
the gradient of a scalar φ, i.e. Ai = φ,i. Then

Ak; i −Ai; k = φ,k,i − Γl
kiφ,l − φ,i,k + Γl

ikφ,l =
(
Γl

ik − Γl
ki

)
φ,l. (18)

In Galilean coordinates

Γl
ik = Γl

ki = 0, (19)

hence in Galilean coordinates

Ak; i −Ai; k = 0, (20)

but taking into account that

Ak; i −Ai; k (21)

is a tensor we conclude that if it equals to zero in one system of coordinates it should
be equal to zero in any other coordinate system, hence

Γl
ik = Γl

ki (22)

in any coordinate system.
This is a typical example of the proof widely used in General Relativity:

If some equality between tensors is valid in one coordinate system then this equality is
valid in arbitrary coordinate system. This is obvious advantage to deal with tensors.

Then we can show that covariant derivatives of gik are equal to zero. Indeed:

DAi = gikDAk DAi = D(gikAk) = gikDAk + AkDgik, hence gikDAk = gikDAk + AkDgik, (23)

which obviously means that

AkDgik = 0. (24)

Taking into account that Ak is arbitrary vector, we conclude that

Dgik = 0. (25)

This is another example of proof in General Relativity:

If the the sum BikAi = 0 for arbitrary vector Ai then the tensor Bik = 0.
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Then taking into account that

Dgik = gik;mdxm = 0 (26)

for arbitrary infinitesimally small vector dxm we have

gik;m = 0. (27)

Now we are ready to relate the Christoffel symbols to the metric tensor. Introducing
useful notation

Γk, il = gkmΓm
il , (28)

we have

gik; l =
∂gik

∂xl
− gmkΓm

il − gimΓm
kl =

∂gik

∂xl
− Γk, il − Γi, kl = 0. (29)

Permuting the indices i, k and l twice as

i→ k, k → l, l → i, (30)

we have

∂gik

∂xl
= Γk, il + Γi, kl,

∂gli

∂xk
= Γi, kl + Γl, ik and − ∂gkl

∂xi
= −Γl, ki − Γk, li. (31)

Taking into account that

Γk, il = Γk, li, (32)

after summation of these three equation we have

gik,l + gli,k − gkl,i = 2Γi, kl, (33)

and finally

Γi
kl =

1
2
gim

(
∂gmk

∂xl
+

∂gml

∂xk
− ∂gkl

∂xm

)
. (34)

Now we have expressions for the Christoffel symbols in terms of the metric tensor
and hence we know their dependence on coordinates.
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16.4. Physical applications

The previous material can be summarized as follows:
Gravity is equivalent to curved space-time, hence in all differentials of tensors we
should take into account the change in the components of a tensor under an in-
finitesimal parallel transport. Corresponding corrections are expressed in terms of
the Cristoffel symbols and reduced to replacement of any partial derivative by corre-
sponding covariant derivative. In other words we can say that
If one wants to take into account all effects of Gravity on any local physical process,
described by the corresponding equations written in framework of Special Relativity,
one should just replace all partial derivatives by covariant derivatives in these equation
according to the following very nice and simple but actually very strong and important
formulae:

d→ D and ,→; (35)

Example 1:

In special Relativity obviously

dgik = 0 and gik,l = 0, (36)

while in General Relativity

Dgik = 0 and gik;l = 0. (37)

Example 2. The motion of a free particle
Let us apply above formulae to description of motion of a test particle in a given
gravitational field. Let

ui =
dxi

ds
(38)

is the four-velocity. Then equation for motion of a free particle in absence of gravita-
tional field is

dui

ds
= 0. (39)
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In presence of a gravitational field this equation is generalized to the equation

Dui

ds
= 0, (40)

which gives

Dui

ds
=

dui

ds
+ Γi

knuk dxn

ds
=

d2xi

ds2
+ Γi

knukun = 0. (41)

Thus from physical point of view the equation

d2xi

ds2
+ Γi

kl

dxk

ds

dxl

ds
= 0 (42)

describes the motion of free particle in a given gravitational field and

d2xi

ds2
= −Γi

kl

dxk

ds

dxl

ds
(43)

is the four-acceleration, while from geometrical point of view this equation is the
equation for geodesics in a curved space-time. That is why all particles move along
geodesics, hence with the same acceleration. Now this experimental fact is not coin-
cidence anymore but consequence of geometrical interpretation of gravity.


