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19.1. Geometry of isotropic and homogeneous Universe

What is the space-time geometry corresponding to isotropic and homogeneous Uni-
verse? Let us write the metric in the following form:

ds2 = gikdxidxk = g00(dx0)2 + 2g0αdx0dxα − dl2, (1)

where

dl2 = −gαβdxαdxβ . (2)

We will work in the so called ”co-moving” frame of reference, co-moving to the matter
filling the Universe. The fact that all directions in a isotropic Universe are equivalent
to each other, means that

g0α = 0, (3)

otherwise g0α 6= 0 considered as 3-vector would lead to non-equivalence of different
directions. The homogeneity of the Universe means that g00 can depend only on time
coordinate, hence we can choose time coordinate t as

c2dt2 = g(x0)00(dx0)2, (4)

to obtain

ds2 = c2dt2 − dl2. (5)

19.2. Three-dimensional space of constant curvature

According to the cosmological principle the Universe is the same everywhere, as a
consequence, The three-dimensional space is curved in the same way everywhere,
which means that at each moment of time the metric of the space is the same at all
points. To obtain such a metric let us start from the following geometrical analogy.
Let us consider the two-dimensional sphere in the flat three-dimensional space. In
this case the element of length is

dl2 = (dx1)2 + (dx2)2 + (dx3)2. (6)

The equation of a sphere of radius a in the three-dimensional space has the form

(x1)2 + (x2)2 + (x3)2 = a2. (7)
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The element of length on the two-dimensional sphere can be obtained if one expresses dx3

in terms of dx1 and dx2. From the equation for sphere we have

x1dx1 + x2dx2 + x3dx3 = 0, (8)

hence

dx3 = −x1dx1 + x2dx2

x3
= − x1dx1 + x2dx2√

a2 − (x1)2 − (x2)2
. (9)

Substituting dx3 into dl we have

dl2 = (dx1)2 + (dx2)2 +
(x1dx1 + x2dx2)2

a2 − (x1)2 − (x2)2
. (10)

Introducing the ”polar” coordinates instead of x1 and x2

x1 = r cos φ,

x2 = r sin φ, (11)

we obtain

dl2 = (dr cos φ− r sin φdφ)2 + (dr sin φ + r cos φdφ)2+

r cos φ(dr cos φ− r sin φdφ) + r sin φ(dr sin φ + r cos φdφ)

a2 − r2
=

a2dr2

a2 − r2
+ r2dφ2 =

=
dr2

1− r2

a2

+ r2dφ2. (12)

Now we can repeat step by step the previous derivation, by considering the geometry of
the three-dimensional space as the geometry on the three-dimensional hypersphere in some
fictitious four-dimensional space ( don’t confuse with the physical four-dimensional space-
time). In this case the element of length is

dl2 = (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2. (13)

The equation of a sphere of radius a in the four-dimensional space has the form

(x1)2 + (x2)2 + (x3)2 + (x4)2 = a2. (14)
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The element of length on the three-dimensional hypersphere, which represents the three-
dimensional space of constant curvature, can be obtained, if one expresses dx4 in terms of
dx1, dx2 and dx3. From the equation for hypersphere we have

x1dx1 + x2dx2 + x3dx3 + x4dx4 = 0, (15)

hence

dx4 = −x1dx1 + x2dx2 + x3dx3

x4
= − x1dx1 + x2dx2 + x3dx3√

a2 − (x1)2 − (x2)2 − (x3)2
. (16)

Substituting dx3 into dl we have

dl2 = (dx1)2 + (dx2)2 + (dx3)2 +
(x1dx1 + x2dx2 + x3dx3)2

a2 − (x1)2 − (x2)2 − (x3)2
. (17)

Introducing the ”spherical” coordinates instead of x1, x2 and x3

x1 = r sin θ cos φ,

x2 = r sin θ sin φ,

x3 = r cos θ, (18)

we obtain

dl2 = (dr sin θ cos φ + r cos θdθ − r sin θ sin φdφ)2+

+(dr sin θ sin φ + r cos θ cos φdθ + r sin θ sin φdφ)2 + (dr cos θ − r sin θdθ)2+

1

a2 − r2
[r sin θ cos φ(dr sin θ cos φ + r cos θdθ − r sin θ sin φdφ)+

+r sin θ sin φ(dr sin θ sin φ + r cos θ cos φdθ + r sin θ sin φdφ)+

+r cos θ(dr cos θ − r sin θdθ)] =

=
a2dr2

a2 − r2
+ r2(dθ2 + sin2 θdφ2) =

=
dr2

1− r2

a2

+ r2(dθ2 + sin2 θdφ2). (19)

Taking into account that r ≤ a we can introduce instead of r the new lagrangian radial
coordinate χ such that

r = a sin χ and dr = a cos χdχ, (20)

as a result dl can be rewritten as

dl2 = a2[dχ2 + sin2 χ(dθ2 + sin2 θdφ2)]. (21)

Now we can write the metric interval for the four dimensional space time as

ds2 = c2dt2 − a2[dχ2 + sin2 χ(dθ2 + sin2 θdφ2)]. (22)
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We can repeat all these calculation for the three-dimensional space of the negative constant
curvature. For that one should replace the equation for the hypersphere by

(x1)2 + (x2)2 + (x3)2 + (x4)2 = −a2, (23)

which is a sphere of imaginary radius. This means that to obtain the metric of three-
dimensional space of constant negative curvature one should just replace a by ia.
Obviously, when a→∞ we obtain the case of the spatially flat space.
This method is called the method of embedding diagrams. The Geometry on different
surfaces of constant curvature is shown in Fig.19.1. We will see later then in the relativistic
cosmology the curvature of the three-dimensional space is related with the density parameter
as it is shown on this figure.

19.3. Friedman-Lematre-Robertson-Walker (FLRW) metric

The fact that the Universe is expanding means that instead of constant a we should
introduce a scale factor R(t) and finally we obtain the famous Friedmann-Lematre-
Robertson-Walker metric for expanding Universe

ds2 = c2dt2 − R2(t)[dχ2 + f2(χ)(dθ2 + sin2 θdφ2)], (24)

where

f =

 sinχ for constant positive curvatue
sinhχ for constant negative curvatue

χ for zero curvature

 . (25)

The function f(χ) can be written in more elegant way as follows

f(χ) =
sinAχ

A
, (26)

where

A =

 1 for constant positive curvature
i for constant negative curvature
0 for zero curvature

 . (27)

Indeed, if A = 1, obviously f(χ) = sin χ. If A = i

f(χ) =
sin iχ

i
=

ei·iA − e−i·iA

2i · i
=

e−A − eA

−2
=

eA − e−A

2
= sinh χ. (28)

If A = 0

f(χ) = lim
A→0

sinAχ

A
= χ. (29)
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Sometime it is convenient to introduce another time coordinate, η, called the conformal time
and defined as

cdt = Rdη. (30)

Then

ds2 = R(η)[dη2 − dχ2 − f2(χ)(dθ2 + sin2 θdφ2)]. (31)

Now using the EFEs we can obtain required equations for R(t), in other words we can obtain
relativistic cosmological models based on the EFEs.

19.4. Relativistic acceleration equation

In order to avoid confusion between the scale factor R used in previous sections, with
the scale curvature used in the present section, let us use a as the new notation for
the scale factor. Contracting the EFEs written in mixed form we have

Rm
m − 1

2
δm
mR =

8πG

c4
Tm

m , (32)

hence

R − 4
2
R =

8πG

c4
T =

8πG

c4
(ε − 3P ), (33)

hence

R − 2R =
8πG

c4
(ε − 3P ), (34)

finally

R = −8πG

c4
(ε − 3P ). (35)

Then

Ri
k =

1
2
δi
kR +

8πG

c4
T i

k =
8πG

c4
T i

k −
1
2
δi
k

8πG

c4
T =

8πG

c4
(T i

k −
1
2
δi
kT ). (36)

R0
0 =

8πG

c4
(T 0

0 − 1
2
T ) =

8πG

c4
[ε − 1

2
(ε − 3P )] =

4πG

c4
(ε + 3P ) =

4πG

c2
(ρ +

3P

c2
). (37)

R0
0 = g0nRn0 = R00 = Γl

00,l − Γl
0l,0 + Γl

00Γ
m
lm − Γm

0lΓ
l
0m. (38)
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We can see that

Γl
00 =

gln

2
(g0n,0 + gn0,0 − g00,n) = gln

(
g0n,0 −

1

2
g00,n

)
= glng0n,0 = gl0g00,0 + glαg0α,0 = 0. (39)

Hence

R0
0 = −Γl

0l,0 − Γm
0lΓ

l
0m = −Γα

0α,0 − Γβ
0αΓα

0β . (40)

Taking into account that

Γα
0β =

gαn

2
(g0n,β + gβn,0 − g0β,n) =

gαn

2
gβn,0 =

ȧ

ca

gαn

2
gβn =

ȧ

ca
δα

β . (41)

Thus

R0
0 = −

[
d

cdt

(
ȧ

ac

)
δα

α +
(

ȧ

ac

)2

δβ
αδα

β

]
= − 3

c2

[
ä

a
−

(
ȧ

a

)2

+
(

ȧ

a

)2
]

= − 3ä

ac2
. (42)

Hence

− 3ä

ac2
=

4πG

c2
(ρ +

3P

c2
) (43)

and

ä = −4πG

3
(ρ +

3P

c2
)a. (44)

This is the relativistic acceleration equation. Compare with

ä = −4πGρ

3
a (45)

in the Newtonian theory.


