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20.1. The Energy Conservation Equation

The acceleration equation plus the equation of state contain three variables to find:
the scale factor R (or a), the energy density ε (ε = ρc2) and pressure P (when P < 0 it
is better to consider P as a tension). Hence we need one more equation. Let us take
as the third equation

T i
0;i = 0, (1)

which, as was shown in the previous lecture is the consequence of the EFEs and the
Bianchi identity. Using the rules of the covariant differentiation we have
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Hence,

ρ̇ = −3Ṙ

R

(
ρ +

P

c2

)
. (3)

This is the energy conservation equation. If P = 0 this equation gives the equation of
mass conservation for dust. It is interesting to mention that this equation is identical
to the first law of thermodynamics which says that the change of energy ,E = ρc2V ,
in volume, V , surrounded by the surface of area S is equal to the work done by the
pressure forces, FP = SP ,

dE = −FP dx = −PSdx = −PdV, or Ė = −PV̇ , (4)
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Let us consider a sphere of radius r, in this case

V =
4π

3
r3, (5)

and

(
r3ρ
)·

= −P

c2

(
r3
)·

, (6)

then

ρ̇r3 + 3r2Ṙρ = −P

c2
3r2, (7)

from which we have

ρ̇ = −3ṙ

r

(
ρ +

P

c2

)
. (8)

Taking into account that in the homogeneously expanding Universe

ṙ

r
=

Ṙ

R
, (9)

we obtain exactly the energy conservation equation derived from the EFEs and the pure
geometrical Bianchi identity. It means that the first law of thermodynamics is a consequence
of the EFEs! Actually we completed the required set of equations describing the relativistic
cosmological models. Now we are going to derive from these two equations, the acceleration
equation and the energy conservation equation, the relativistic version of the Friedman
equation.

20.2. The Friedman Equation for for FLRW metric. Great Surprise.

From the energy conservation equation we obtain

P

c2
= −ρ− ρ̇R

3Ṙ
. (10)
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Putting this expression for p into the acceleration equation, we have

R̈ = −4πGR

3
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)
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Ṙ

)
=

=
4πG

3Ṙ
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(
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)·
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then multiplying both sides of this equation by 2Ṙ and taking into account that

2ṘR̈ =
(
R2
)·

, (12)

we obtain

(
Ṙ2
)·

=
8πG

3

(
ρR2

)·
, (13)

hence

Ṙ2 =
8πG

3
ρR2 − kc2, (14)

This is the Friedmann equation in the relativistic Cosmology [k appears here as a dimen-
sionless integration constant, exactly as in the Newtonian cosmological models, but as one
can easily show is related now with 3-curvature].

This is rather surprising result: the Friedman equation is identical to the equation obtained
in the Newtonian theory and does not contain the pressure term at all. However, the pressure
is really extremely important. Indeed, if we put the equation of state

P = αρc2, (15)

into the energy conservation equation we obtain

ρ̇

ρ
= −3(1 + α)

Ṙ

R
, (16)

hence

(ln ρ)· + 3(1 + α)(ln R)· = [ln ρ + 3(1 + α) ln R]· =
{
ln[ρR3(1+α)]

}·
= 0, (17)

thus

ln[ρR3(1+α)] = C (18)

and

ρR3(1+α) = C′. (19)
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Finally we obtain that

ρ = ρ0

(
R0

R

)3(1+α)

. (20)

If

8πGρ

3
� |k|c2

R2
, (21)

the Friedman equation is reduced to

Ṙ2

R2
=

8πGρ

3
. (22)

Substituting into this equation the expression for ρ obtained above, we have

Ṙ

R
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(
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3

)1/2 (R0

R

) 3(1+α)
2

; (23)

we can solve this equation by the separation of variables. For that let introduce

x =
R

R0
β =

3(1 + α)

2
and A =

(
8πGρ

3

)1/2

. (24)

In terms of x, β and A the above equation can be written as

ẋxβ−1 = A, (25)

then

1

β
dxβ = Adt, (26)

hence

xβ = βAt + C, (27)

since x = 0 at t = 0 we put C = 0. Thus

xβ ∼ t, (28)

and

R ∼ x ∼ t
1
β = t

2
3(1+α) . (29)

This solution is valid if

8πGρ

3
� |k|c2

R2
, (30)

the LHS goes like R−3(1+α) while the RHS goes like R−2. Hence if −3(1 + α) > −2 or α < −1/3
our solution is valid for small R, if α > −1/3 our solution is valid for large R.



[Page 98]
A G Polnarev. Mathematical aspects of cosmology (MTH6123), 2009.PART IV. Relativis-
tic Cosmological Models.Chapter 20. Relativistic Cosmological Models and Content of the
Universe.20.3. Inflation and Expansion with Acceleration.

20.3. Inflation and Expansion with Acceleration

Let the scale factor depends on time as

R ∼ tγ . (31)

Taking into account that the physical distances between any two remote objects in the
Universe are proportional to R, while the cosmological horizon is proportional to t, it
is clear that if γ > 1 sooner or later any two objects will be outside the cosmological
horizon, i.e. will be causally disconnected. Such fast expansion of the Universe is
called inflation. On other hand, the condition that the Universe is expanding with
acceleration rather than with deceleration,

R̈ ∼ γ(γ − 1)tγ−2 > 0, (32)

means that if γ > 1 the universe expands with acceleration. In order words we can
say that the inflation always implies the expansion with acceleration.
From the previous section we know that γ is related to the equation of state parameter
α as

γ =
2

3(1 + α)
. (33)

Thus, the condition of inflation can be written as

2
3(1 + α)

> 1, α < −1
3
. (34)

If α = −1/3 and γ = 1 the acceleration od expansion is equal to zero. Such situation
corresponds to domination of cosmic strings. If α = −1 corresponds to domination of
dark energy in the form of Λ-term. Indeed, in this case, the stress-energy tensor is

Tik = (ε + P )uiuk − gikP = εgik (35)

and as follows from the conservation of energy equation

ε̇ = −3Ṙ

R
(ε + P ) = 0, (36)

which means that ε = const, hence Tik has the same form as the Λ-term, i.e. const gik.
In this case γ → ∞ and formally we can not apply the power low to the evolution of
the scalar parameter and should consider this case separately. As follows from the
Friedman equation for spatially flat Universe (k = 0) the Hubble constant

H =
Ṙ

R
=

√
8πGε

3c2
= const, (37)
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Hence the scale factor satisfies the following equation

Ṙ−HR = 0 (38)

and the obvious solution of this equation is

R ∼ eHt. (39)

This is the exponential inflation.

20.4. The Hubble constant as a function of the scale factor

The real Universe contains different forms of matter, radiation and dark energy. Let
us call them components. At different epochs the different components dominate. Let
us consider the situation when there are several not interacting with each other com-
ponents. Let ascribe to each component some number i = 1, 2, 3...N . Each component
is characterized by its own equation of sate

P(i) = α(i)ρ(i)c
2. (40)

The density of each component evolves according to its own law

ρ(i)(t) = ρ(i)(t0)
(

R

R0

)−3(1+α(i))

= ρcrΩ(i)

(
R

R0

)−3(1+α(i))

, (41)

where

ρcr =
3H2

0

8πG
(42)

is the critical density at the present moment and Ω(i) is the dimensionless density
parameter taken also at the present moment. According to the Friedman equation
for spatially flat universe

H2 =
8πGρ

3
, (43)

where

ρ = ΣN
i=1ρ(i)(t) = ρcrΣN

i=1Ω(i)

(
R

R0

)−3(1+α(i))

. (44)
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Hence

H = H0

√
ΣN

i=1Ω(i)

(
R

R0

)−3(1+α(i))

. (45)

It is nice looking at this formula and Fig.1.0 to think about the history of the Universe with
the help of relativistic cosmological model.


