Review of Thermodynamics

The equations of stellar structure involve derivatives of thermo-
dynamic variables such as pressure, temperature, and density.
To express these derivatives in a useful form, we will need to re-
view the basic thermodynamic relations. First, let’s define the
variables:

p: the gas density q: the specific heat content
P: the gas pressure u: the specific internal energy
T: the gas temperature s: the specific entropy

p: the mean molecular weight V' the specific volume (1/p)

Note that ¢, u, s, and V are all per unit mass. From these
variables come the specific heats
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the ratio of the specific heats
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the adiabatic temperature gradient
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an isothermal compressibility coefficient
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a volume coefficient of expansion
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and a chemical potential coefficient
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(For the following, we will assume the chemical composition is
fixed.)

We will also need the first law of thermodynamics:
dq="Tds =du+ PdV (1.8)

Note that although there are four variables in this equation (s,
T, P, and V), only two are independent.



To derive the relationships between the various thermodynamic
variables, first take s and V' as independent, and re-write (1.8)
as

du=Tds — PdV (1.9)

However, when written in terms of s and V', du is formally
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Now, mathematically
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Similarly, if we choose s and P as the independent variables, and
add d(PV) to each side of (1.9), then the first law of thermody-

namics becomes

dH = d(u+ PV) = Tds — PdV + PdV + VdP = Tds + VdP



The total first derivative of H is then
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which implies that
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If we subtract d(T's) from each side of the first law of thermody-
namics, then T and V are the free parameters, via

and

dF = d(u—Ts) =Tds — PdV —Tds — sdT = —PdV — sdT
We then get the relations
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which leads via the second derivatives to
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Finally, if " and P are chosen to be independent, and d(PV —T's)
are added to (1.8), then we can derive the relation
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Thus, we have Maxwell’s relations
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To derive a relation between the specific heats, start by letting
T and P be independent, and write the specific heat content as
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We can now evaluate (dq/dT) while holding V' constant, i.e.,
with dV =0
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The term on the left side of the equation is ¢y, the first term

on the right is cp, and (ds/dP)r = —(dV/dT)p by a Maxwell
relation (1.14). Thus,
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The first partial differential can immediately be written in terms
of the volume coefficient of expansion (1.6)
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The second partial differential can also be re-written, if one first
notes that the total derivative for dV is
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Thus, when V' is held constant, dV = 0, and
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The numerator on the right side is again (d/pT"), while the de-
nominator is related to the compressibility coefficient by
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Note that this reduces to R = k/my4 for an ideal gas.



Finally, to express the change in the heat content of a system,
dq, in terms of the intensive parameters only, choose V and T as
the independent variables, and write the change in entropy as
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Using the definition of heat capacity (1.1) and the Maxwell rela-
tion (1.13), this becomes
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If we now substitude (1.16) for (0P/JT)y, and convert dV to dp
using dV = —1/p? dp, we get an expression for dg
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This can then be further simplified by noting that
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This equation also leads directly to an expression for the adia-
batic temperature gradient. If dqg = 0, then

cpdl = édP
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which implies that
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and

Note that for an ideal gas, the definition of an adiabat implies
that
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Hence for a monotonic gas with v = 5/3,

Vad = (2/3)/(5/3) = 0.4 (1.20)

Note also that (1.19) can then be substituted back into (1.18)
to yield an equation for dq in terms of P, T, cp, and adiabatic
temperature gradient
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