
Review of Thermodynamics

The equations of stellar structure involve derivatives of thermo-
dynamic variables such as pressure, temperature, and density.
To express these derivatives in a useful form, we will need to re-
view the basic thermodynamic relations. First, let’s define the
variables:

ρ: the gas density q: the specific heat content
P : the gas pressure u: the specific internal energy
T : the gas temperature s: the specific entropy
µ: the mean molecular weight V : the specific volume (1/ρ)

Note that q, u, s, and V are all per unit mass. From these
variables come the specific heats

cV =

(

dq

dT

)

V

= T

(

∂s

∂T

)

V

(1.1)

cP =

(

dq

dT

)

P

= T

(

∂s

∂T

)

P

(1.2)

the ratio of the specific heats

γ =
cP

cV
(1.3)

the adiabatic temperature gradient

∇ad =

(

∂ lnT

∂ lnP

)

s

(1.4)

an isothermal compressibility coefficient

α = −
P

V

(

∂V

∂P

)

T,µ

=

(

∂ ln ρ

∂ lnP

)

T,µ

(1.5)



a volume coefficient of expansion

δ =
T

V

(

∂V

∂T

)

P,µ

= −

(

∂ ln ρ

∂ lnT

)

P,µ

(1.6)

and a chemical potential coefficient
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(For the following, we will assume the chemical composition is
fixed.)

We will also need the first law of thermodynamics:

dq = Tds = du + P dV (1.8)

Note that although there are four variables in this equation (s,
T , P , and V ), only two are independent.



To derive the relationships between the various thermodynamic
variables, first take s and V as independent, and re-write (1.8)
as

du = Tds − P dV (1.9)
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Now, mathematically
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Similarly, if we choose s and P as the independent variables, and
add d(PV ) to each side of (1.9), then the first law of thermody-
namics becomes

dH = d(u + PV ) = Tds − PdV + PdV + V dP = Tds + V dP



The total first derivative of H is then
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If we subtract d(Ts) from each side of the first law of thermody-
namics, then T and V are the free parameters, via

dF = d(u − Ts) = Tds − PdV − Tds − sdT = −PdV − sdT

We then get the relations
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Finally, if T and P are chosen to be independent, and d(PV −Ts)
are added to (1.8), then we can derive the relation
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Thus, we have Maxwell’s relations
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To derive a relation between the specific heats, start by letting
T and P be independent, and write the specific heat content as

dq = Tds = T

[(

∂s

∂T

)

P

dT +

(

∂s

∂P

)

T

dP

]

and dP as

dP =

(

∂P

∂T

)

V

dT +

(

∂P

∂V

)

T

dV

This gives

dq = T

(

∂s

∂T

)

P

dT + T

(

∂s

∂P

)

T

[(

∂P

∂T

)

V

dT +

(

∂P

∂V

)

T

dV

]

We can now evaluate (dq/dT ) while holding V constant, i.e.,

with dV = 0
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The term on the left side of the equation is cV , the first term
on the right is cP , and (ds/dP )T = −(dV/dT )P by a Maxwell
relation (1.14). Thus,
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The first partial differential can immediately be written in terms
of the volume coefficient of expansion (1.6)
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The second partial differential can also be re-written, if one first
notes that the total derivative for dV is
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The numerator on the right side is again (δ/ρT ), while the de-
nominator is related to the compressibility coefficient by
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Note that this reduces to R = k/mA for an ideal gas.



Finally, to express the change in the heat content of a system,
dq, in terms of the intensive parameters only, choose V and T as
the independent variables, and write the change in entropy as
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Using the definition of heat capacity (1.1) and the Maxwell rela-
tion (1.13), this becomes
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If we now substitude (1.16) for (∂P/∂T )V , and convert dV to dρ
using dV = −1/ρ2 dρ, we get an expression for dq
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This can then be further simplified by noting that
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This equation also leads directly to an expression for the adia-
batic temperature gradient. If dq = 0, then

cP dT =
δ

ρ
dP



which implies that
(

∂T

∂P

)

s

=
δ

ρcP

and

∇ad =

(

∂ lnT

∂ lnP

)

s

=
Pδ

TρcP
(1.19)

Note that for an ideal gas, the definition of an adiabat implies
that
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Hence for a monotonic gas with γ = 5/3,

∇ad = (2/3)

/

(5/3) = 0.4 (1.20)

Note also that (1.19) can then be substituted back into (1.18)
to yield an equation for dq in terms of P , T , cP , and adiabatic
temperature gradient
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