
The Virial Theorem for Stars

Stars are excellent examples of systems in virial equilibrium. To
see this, let us make two assumptions:

1) Stars are in hydrostatic equilibrium
2) Stars are made up of ideal gases.

Now consider the total internal energy of a star
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If we substitute in the ideal gas law
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Now take the equation of hydrostatic equilibrium
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If we multiply this equation by 4πr3dr, and integrate over the
entire star, we get
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When integrated by parts, the left side of the equation is
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Now note that the first term on the left side of the equation
goes away, since the pressure at the surface is P (R) = 0. Note
also, that the right side of equation is just the total gravitational
energy of the entire star. Thus,
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or, since dM = 4πr2ρ dr,
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This is simply virial equilibrium

2 Ei + Egrav = 0 (10.1.6)

The expression is independent of M(r), ρ(r), and T (r), and can
even be generalized for other equations of state. For ideal gases
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but more generally, we can write

P = (γ − 1) ρ u (10.1.7)

where γ = 5/3 for an ideal gas. Under this law, (10.1.3) becomes
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the equation of virial equilibrium becomes

3(γ − 1)Ei + Egrav = 0 (10.1.8)

and the total energy of the star, W = Ei + Egrav, is
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Note the implication of these equations. Because stars have non-
zero temperatures, they will radiate some of their energy into
space. Thus, through energy conservation
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This means that as a star radiates, its gravitational energy will
become more negative, but this decrease will be less than the
amount of energy radiated. The remaining energy will go into
heating the star. In the case of an ideal gas, one half the radiated
energy will go into Egrav, and the other half into Ei.

Note also from (10.1.9), that since Egrav < 0, the total energy of
a star will be negative (which means the star is bound). Only
if the star is completely relativistically degenerate (γ = 4/3) is
W = 0.



Stellar Timescales

There are several characteristic timescales associated with the
evolution of stars. These timescales are extremely important, in
that they allow us to make quick order of magnitude calculations
about the importance of various physical processes.

THE KELVIN-HELMHOLTZ TIME SCALE

The characteristic timescale for energy release from gravitational
contraction can be computed simply from the amount of energy
available, Egrav and the rate of energy loss, L. From (10.1.4)
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where q is a number of the order unity. The Kelvin-Helmholtz
timescale is then
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The Kelvin-Helmholtz timescale is also sometimes called the ther-
mal timescale; it gives a rough idea of how long a star can shine
without internal sources of energy. Similarly, it also describes
how long it takes for thermal energy produced in the center of
the star via gas pressure, to work its way out via energy trans-
port.



THE FREE-FALL TIME SCALE

The timescale for a star’s core to feel gravitational changes in
surface of the star is the dynamical, or free-fall timescale. Con-
sider an impact at the stellar surface. A pressure wave caused
by this impact will reach the center of the star in
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where vs is the speed of sound. If the star is near hydrostatic
equilibrium, then
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This timescale describes how quickly the star mechanically ad-
justs to changes.

THE NUCLEAR TIME SCALE

Another useful timescale to know is how long it takes the reservoir
of nuclear energy in the star to be released, i.e.,
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where Q is the energy released per unit gram for the nuclear
reaction being considered. For hydrogen burning, Q = 6.3 ×

1018 ergs-g−1, while for helium burning, it is a factor of ∼ 10
smaller.



Chemical Composition of Stars

For abundance studies in the ISM, one normally quotes ni, the
number density of particles of species i per unit volume. For
stellar modeling, however, the variable Xi is used, which is the
mass fraction of species i. Xi and ni are related by
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where Ai is the species’ atomic weight and NA is Avagadro’s
number. With this definition, the abundances are normalized,
such that
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A star is normally assumed to be chemically homogeneous when
it starts its life, but nuclear reactions will quickly change its
composition. If rij is the number of reactions per unit volume
that change species i into species j, then clearly, the change in
the abundance of element i with time will be
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(We will consider the reaction rates, rji in the next lecture.) The
first term in the bracket represents the creation of element i, while
the second term gives the destruction of element i. Associated
with each of these reactions is an energy (per unit mass), εij . If
Qij is the amount of energy generated (or lost) when one particle
of i reacts to form j, then

εij =
rijQij

ρ
(10.3.4)



Stars can become extremely inhomogeneous as a result of nu-
clear reactions. However, in regions where convection occurs,
this inhomogeneity immediately disappears. (The timescale for
convection is extremely short.) Thus, within a convective region,
dXi

dm = 0.



Nuclear Reaction Energies

To compute the amount of energy generated by nuclear reactions,
we first must compute the energy associated with a single reac-
tion. To do this, consider the following reaction between particle
or photon a and a nucleus X

a + X −→ Y + b (10.4.1)

which, in shorthand notation, is expressed as X(a, b)Y . Natu-
rally, during this process, charge, nucleon number, momentum,
and energy are all conserved. So

EaX + (Ma + MX) c2 = EbY − (Mb + MY ) c2

Since nucleon number is conserved, this equation can be re-
written by subtracting the nucleon number (in a.m.u.’s) from
each side

EaX + ∆Ma + ∆MX = EbY − ∆Mb − ∆MY (10.4.2)

where ∆M is the atomic mass excess of each particle in units of
energy. By definition, ∆MC12 = 0. For reference, H1 has a mass
excess of +7.289 MeV, while ∆MFe56 = −60.605 MeV. (Actually,
the quoted values for mass excess are usually off by a couple of
eV, since the tables are based on atomic masses, not nuclear
masses, and different elements have different electron binding
energies. Compared to the nuclear binding energies, this error is
negligible.)

Note that the above definition of Q assumes all of the mass defect
goes into usable energy for the star. However, if the reaction
involves the weak nuclear force, neutrinos will also be produced.
Neutrino energy will always be lost from the star (except in a
supernova).


