
Electron Shielding

In the above laws, there is one additional factor which must be in-
serted. Surrounding all the ions in the center of a star is a cloud
of electrons (and some positrons); the net negative charge of this
cloud alters the Coulomb potential each ion sees and thus increases
the reaction rate. To estimate the importance of each term, first
consider the Boltzmann equation, which describes the relative den-
sity of particles. If the statistical weights of two states are the same,
then
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where E is the energy difference between the two states. Now sup-
pose there is a varying electrostatic potential, φ(r). For normal
stars, Ze φ ¿ kT , so we can write the density of particles, as a
function of φ as
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If we separate out the ions and electrons, then
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and the charge density as a function of the potential is
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This can be simplified by noting that the average charge density
must be zero, i.e.,
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When we substitute in the definition for ni and ne via (5.1.2) and
(5.1.4), this becomes
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where xi is the mass fraction and fi is the ionization fraction. Since
the conditions are such that nuclear reactions are occurring, fi = 1,
so the charge density finally becomes
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This charge distribution now allows us to solve for the potential
explicitly, (at least in the spherically symmetric case) via the Poisson
equation
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The solution to this equation (which you can check if you like) is

φ =
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where rD is the Debye-Hückel length
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From the above equation, the potential goes to the normal electro-
static potential, i.e., φ → Ze/r as r → 0, so the electron shielding
only works effectively at large distances, i.e., r > rD. However, most
reactions are due to particles near the Gamow peak; the classical
separations of these particles are rG = ZaZXe2/E0. A comparison
shows that
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For all normal stars, rD À rG, which means that electron shielding
is not very effective. Electron shielding changes the potential barrier
(11.3) slightly, by
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and thus increases the cross sections and reaction rates by f =
eED/kT , with
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For typical stellar densities and temperatures, this correction will be
∼ 10%. This “weak screening” approximation, however, does not
apply to the high density-low temperature regime of white dwarfs.
Under those conditions, the form of the equation will be different.



Summary for Reactions

When electron shielding is included, the nuclear reaction rate equa-
tion becomes

raX = (1 + δaX)−1
ρ2XaXXN2

A

AaAX
f 〈σv〉 (12.2.1)

or, in terms of number density

raX = (1 + δaX)−1NaNXf〈σv〉 (12.2.2)

For non-resonant reactions, 〈σv〉 can be computed directly from
S(E0),

(

∂S
∂E

)

E0

, Za, ZX , Aa, AX , and T , while for resonant reac-

tions, 〈σv〉 is derived from (ωγ), Er, and T .

Now let’s simplify the terminology by first assigning

λaX = 〈σv〉 (12.2.3)

and then defining the lifetime of species X against reactions with
particle a to be
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The form of this equation is now identical with that associated with
radioactivity or other decay phenomena. (Unlike radioactive de-
cay, of course, τa depends on the external environment.) From the
equation above,
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(12.2.5)

Note that the Kronecker delta disappears from the final lifetime
calculation. According to (12.2.1), the reaction rate for identical



particles has a factor of two in the denominator, but since each
reaction destroys two particles, this factor cancels out. Note also,
that by (12.2.4) and (12.2.5), the total lifetime of particle X from
all reactions is
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