
Homology

Because the physics which goes into determining the structure of main-
sequence stars does not change rapidly with mass, one can make the
assumption that a star with mass M1 will just be a scaled version of
a star with mass M0. Stars built under this assumption are called ho-

mologous. Through homology, relations can be found describing how
various stellar quantities (such as radius, luminosity, central tempera-
ture, etc.) change with mass

To begin with, consider that if star 1 is really just a scaled up version
of star 0, then the radius and mass at any point in star 1 will be
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where the subscript 0 refers to the reference star. From the above
relations, it is obvious that
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With this relation, we can compute the density at any point in the
star. From the equation of mass conservation,
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Similarly, we can use the equation of momentum conservation and the
assumption of hydrostatic equilibrium to compute a relation between
pressure, mass, and radius
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The trivial integration then gives
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To make further progress with homology, let’s assume that energy gen-
eration, opacity, and the equation of state are all power laws of density,
pressure, and temperature, and that the power law exponents are the
same for every star. Under this assumption, and the definition of the
thermodynamic quantities (1.5), (1.6), and (1.7), the stellar densities
will be given by
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Using (11.1) and (11.14), the nuclear reaction rates will be

ε ∝ ρλT ν =⇒ ε = ε0
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and, via (9.13), the opacity can be parameterized by

κ ∝ ρpT q =⇒ κ = κ0

(

P

P0

)s (

T

T0

)t

(17.7)



In practice, of course, these exponents will not be the same in every
star. For instance, the temperature dependence of nuclear energy gen-
eration in a low mass star is significantly different than in a high-mass
star. However, for comparisons of similar mass stars, this approxima-
tion should be reasonable.

Now consider the equations of mass conservation (2.1.3), pressure bal-
ance (2.2.4), energy conservation (2.3.2), and thermal structure under
radiative energy transport (2.4.4) and (3.1.6). From (17.3), mass con-
servation is
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which, through the equation of state (17.5), becomes
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From (17.4), pressure equilibrium is simply
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The relation of energy conservation is also straightforward
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If we perform the trivial integration, and substitute (17.6) in for ε,
then

(ε0
ε

)

(

L

L0

)

=

(

ρ

ρ0

)−λ (

T

T0

)−ν (

L

L0

)

=

(

MT

MT0

)

From the equation of state (17.5), we then get
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Finally, we can write down the equation for the thermal structure of
the (radiative) star
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When we substitute for r/r0 using (17.1), and integrate over dT and
dT0, we get
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If we substitute for the opacity using (17.7), then
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Equations (17.8) - (17.11) now allow us to examine how the radius,
pressure, temperature, and luminosity of homologous stars change with
mass and chemical composition. First, to study the behavior with
mass, set µ = µ0. Equations (17.8) - (17.11) in matrix form are then
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Solving these four equations with four unknowns is tedious; the result
is
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Similarly, by holding the mass constant and allowing µ to vary (i.e.,
by replacing the right-hand column vector of (17.12) with the vector
[−ϕ, 0, λϕ, 0]), one can solve for the dependence of stellar structure on
composition:
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Note that the solutions to the homology equations are complicated.
In general, stellar structure depends on the nuclear reaction rates and

opacities and the equation of state. However, by substituting in for
reasonable values of α, δ, λ, ν, s, and t, one can get an idea of how stellar
properties should scale with small changes of mass and composition.
For example, if δ = 0 (i.e., a polytrope with n = α/(1 − α)), we have
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which is the identical expression derived for the mass-radius relation
of a polytrope.



HOMOLOGY RELATIONS WITH THE IDEAL GAS LAW

Because homology relations are derived using ratios, the pro-
cedure cannot be used if any of the terms are additive. Thus, a
general equation of state which include gas and radiation pres-
sure cannot be modeled in this manner. However, if we restrict
ourselves to ideal gases, and use reasonable assumptions for the
energy generation rate and opacity, then we can use homology
to predict stellar structure.

For ideal gases, α = δ = ϕ = 1. Moreover, most nuclear reac-
tions involve two-body collisions, hence the energy generation
per unit volume goes as ρ2. Thus, λ, the density coefficient per

unit mass for nuclear reactions, should also be λ = 1.

We can now investigate the homology relations for the three
opacity laws (electron scattering, Kramers, and H−), and for
values of ν between ∼ 5 (for the proton-proton chain) and ∼ 20
(for the CNO cycle). The results are shown on the next page.



Dependence of Stellar Structure on Mass

Opacity ν = 5 ν = 10 ν = 15 ν = 20

log R − logM Coefficient
e-scattering 0.50 0.69 0.78 0.82
Kramers 0.20 0.52 0.66 0.73
H− 0.73 0.79 0.82 0.85

log P − logM Coefficient
e-scattering 0.00 −0.77 −1.11 −1.30
Kramers 1.20 −0.08 −0.63 −0.93
H− −0.92 −1.15 −1.30 −1.40

log T − logM Coefficient
e-scattering 0.50 0.31 0.22 0.17
Kramers 0.80 0.48 0.34 0.27
H− 0.27 0.21 0.17 0.15

logL − logM Coefficient
e-scattering 3.00 3.00 3.00 3.00
Kramers 5.40 5.24 5.17 5.13
H− 1.16 1.77 2.16 2.43

log Teff − logM Coefficient
e-scattering 0.50 0.40 0.36 0.34
Kramers 1.25 1.05 0.96 0.92
H− −0.92 0.05 0.13 0.18

log ρ − logM Coefficient
e-scattering −0.50 −1.08 −1.33 −1.48
Kramers 0.40 −0.56 −0.98 −1.20
H− −1.20 −1.36 −1.47 −1.55



A few items to note:

• For electron scattering, the mass-luminosity relation for stars
is independent of the mode of energy generation. The relation
is entirely defined by hydrostatic equilibrium, the ideal gas law,
and opacity. Thus, stars in this regime will adjust themselves
so that the nuclear reactions will provide the requisite amount
of luminosity.

• The mass-radius relation for all relevant coefficients is a small
positive number. Thus, unlike n = 3 polytropic stars (which
have a coefficient of −1/3), the radius of homologous stars will
increase (slightly) with mass.

• Since Teff is formed simply from L and R, the dependence of
Teff on mass is easily found. The coefficient is positive, but the
slope of the relation depends on the opacity source. Similarly,
we can derive the slope of the relation in the logL − log Teff

(HR) diagram.

Opacity ν = 5 ν = 10 ν = 15 ν = 20

logL − log Teff Coefficient
e-scattering 6.00 7.43 8.31 8.90
Kramers 4.32 4.99 5.36 5.60

• In a similar manner, we can calculate the behavior of L and
Teff with mean molecular weight, µ. Once again, in the electron
scattering case, the dependence of L on µ is independent of
nuclear energy generation. In fact, (17.14) gives L ∝ µ4; the
luminosity is more sensitive to µ than it is to mass!



• We can also calculate the dependence of Teff on µ, and there-
fore the resulting µ vector in the HR diagram. The resulting
slope is shallower than the main sequence, but greater than the
lines of constant radii.

Opacity ν = 5 ν = 10 ν = 15 ν = 20

logL − log Teff Coefficient with µ
e-scattering 4.27 5.20 5.76 6.13
Kramers 3.43 4.04 4.35 4.53


