
Homologous Expansion and Contraction

Many problems in stellar structure can be addressed by approximat-
ing the expansion (or contraction) of the star as homologous. This is
equivalent to saying that the fractional rate of change in the star is a
constant, i.e.,
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(An example of such a system would be an expanding polytrope, which
keeps the same value of n. Since M ∝ ξ ∝ r/rn, the mass elements
of the star will remain at homologous points; only the scale length rn

changes.)

Although homologous expansion (or contraction) does not often occur
(after all, it does require that the whole star act in unison), it is a good
first-order approximation for many problems, and is useful for quick
analyses. For instance, we can estimate the energy released (or ab-
sorbed) when a star homologously contracts (or expands). According
to (20.1.1)
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If we exchange the two derivatives, then
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Setting this to zero then implies that for homologous movement
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Similarly, we can easily compute how the hydrostatic pressure changes
for an homologous mass point under expansion. From (2.2.4)
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which for constant ṙ/r implies
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Combining (20.1.3) and (20.1.4) with the equation of state for a chem-
ically homogeneous gas
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gives an expression for temperature
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Recall now that the energy associated with the gravitational expan-
sion/contraction of a star is
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which, through (1.19) is
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Substituting using the equation of homology then gives an estimate for
the total amount of energy associated with an expansion or contraction.
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Ṙ

R
(20.1.6)

For an ideal gas with α = δ = 1 and ∇ad = 2/5,
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Note that the value is negative; contraction by the star releases energy,
while expansion absorbs energy.



The Gravothermal Specific Heat

Another use of dynamic homology involves the calculation of
Gravothermal Specific Heat. Two familiar thermodynamic con-
cepts are the specific heat for a system kept at constant pressure
(cP ) and the specific heat for a system in a constant volume
(cV ). However, for some stellar applications, a more interest-
ing quantity is the specific heat of a system kept in hydrostatic
equilibrium. This is called the Gravothermal Specific Heat.

To compute the gravothermal specific heat, c∗, let us pick a re-
gion of the star with radius, rs and assume that, at least locally,
any expansion or contraction near that region is homologous.
(That is, dr = r dx, and after expansion, the nearby shells have
radii r + dr = r(1 + dx), where dx is the same for all shells.)
From (20.1.3) and (20.1.4)
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Hence, if the expansion is homologous
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Now let’s substitute this into the equation of state
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If the chemical composition is constant, then
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which implies
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Now let’s use this result in the first law of thermodynamics.
Recall that when written in terms of cP and ∇ad, the first law
was
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For homologous expansion (or contraction), we then have

dq = cP T

[

dT

T
−∇ad

4δ

4α − 3

dT

T

]

= c∗T
dT

T
(20.2.5)

where

c∗ = cP

(

1 −∇ad

4δ

4α − 3

)

(20.2.6)

Thus, the gravothermal specific heat acts like any other specific
heat: if an amount of heat, dq is added to the system, then the
temperature of the system will rise by dT = dq/c∗.

Equation (20.2.6) has interesting implications for normal stars.
For an ideal gas equation of state (α = 1, δ = 1, ∇ad = 2/5), c∗

is negative. Thus, if the heat content of a core is perturbed by
an amount dq, the temperature of the core immediately drops,

thereby reducing the production of energy. (If this did not
happen, then we would have a thermal runaway!)

The reason stars are stable is that any extra energy that is
produced goes into performing PdV work on the surroundings.
If heat is added to the center of an (ideal gas) star, dT < 0
(by 20.2.5), which implies dP < 0 (from 20.2.4), which implies
dx > 0 (from 20.2.2). Thus the star expands! The extra heat
is used to expand the star, and more energy is used in the



expansion than was originally added. The star must extract
the requisite additional energy from its internal energy.

Note also that under homologous expansion or contraction,
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Therefore, since dx is a constant, all these ratios are also con-
stants, with
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Stability in Core Burning

Now let’s consider how a star will react to changes in its rate of
nuclear reactions. In equilibrium, the energy generated inside a
sphere with mass, M, is balanced by the luminosity transported
outward, i.e.,

εM−L = 0

Now, let’s perturb the energy generation by an amount dε. In
general, the dynamical timescales of stars are short, and the ther-
mal timescales relatively long, so that during the perturbation, the
star will remain in hydrostatic equilibrium, but be out of thermal
balance. Thus
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or, if we divide through by L = εM,
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Now let us derive an expression for dL/L in the case of radiative
energy transfer. From (3.1.5)
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This can be simplified. First, recall that from the definition of
homologous movement and from (20.2.7)
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Next, consider that the opacity, κ, is itself a function of density
and temperature, with κ ∝ ρpT q. Thus
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where we have used (20.2.8) in substituting for dρ/ρ. Moreover,
under homology dT/T is a constant, so
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Putting this all together, we get
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or, still more simply,

dL

L
=

{

4 − q −
δ

4α − 3
(4 + 3p)

}

dT

T
(20.3.4)

Similarly, we can substitute for dε/ε using the energy generation
coefficients. If we let ε ∝ ρλT ν and again use (20.2.8) then
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If we now substitute this and (20.3.4) into (20.3.2), we get
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Note the implications of this equation. In the case of an ideal
gas (α = δ = 1), proton-proton burning (ν ∼ 5, λ = 1), and
Kramers opacity (q = −7/2, p = 1), K = 7.5L/M. Since c∗

is less than zero, a positive temperature perturbation dT/T will
result in a negative dT/dt, i.e., a net cooling. As a result, the
temperature perturbation will be damped away. The coefficients



for CNO burning, electron scattering, and H− opacity make K
even more positive, increasing the stability.

Now consider a non-relativistic degenerate equation of state with
helium fusion. From (7.3.7) P ∝ ρ5/3, which implies δ = 0, and
α = 3/5. Thus, we have a positive gravothermal specific heat
(c∗ = cP ), and a positive value of K (ν + q − 4 ∼ 32). Under these
circumstances, a positive heat fluctuation leads to an increase in
temperature, and a further increase in the nuclear reaction rate.
We have a thermonuclear runaway! Moreover, from (20.2.8),
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Consequently, a stellar core can experience a thermonuclear run-
away, while keeping the density (and, by implication, the pressure)
constant.



Stability in Shell Burning

The analysis of the thermal stability of shell burning stars follows
that for core-burning stars, with one exception. With core burning,
the mass within a burning region is M = 4
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which is defined by the inert core below. In this case
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Since the equations of state and of hydrostatic equilibrium do not
change, we can now substitute this new expression for dρ and re-
calculate c∗. The result is
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(Obviously, this is identical to the original expression, except that
the constant “3” has been replaced by “r/D” in the denomintor.)

Now let’s again consider the equation of thermal stability (20.3.7).
Since K is positive, a negative value of c∗ implies thermal stability,



while a positive value denotes a thermal runaway. As demonstrated
above, if the gas conditions are degenerate, δ = 0, and again we
have a runaway. However, suppose we are dealing with an ideal gas
(which is the relevant condition, since the gas in the shell is outside
the core). For core burning stars, an ideal gas equation of state
always produces a negative value of c∗, so the star is stable. But
according to (20.3.11), if D is small, r/D will be large enough to
make c∗ positive. Thus, nuclear burning in thin shells is susceptible
to thermonuclear runaways.

In essence what is happening is that if D/r is small, a small change
in D causes a large change in ρ, but, in absolute terms, a very minor
change in dr/r. Thus the layers above, which are in hydrostatic
equilibrium, are barely affected, and dP/P ≈ 0. The effective
equation of state is therefore ρ ∼ 1/T , for which α = 0 and δ = 1.
Thus, fusion under these conditions can be unstable and runaways,
or thermal pulses, can occur.


