
Post Main Sequence Evolution

Since a star’s luminosity on the main sequence does not change
much, we can estimate its main-sequence lifetime from simple
timescale arguments, and the mass-luminosity relation. If L ∝
Mη, then

τMS ∝
M

L
∝ M1−η

If we adopt a main-sequence lifetime of the Sun of 1010 years,
then

τMS = 1010

(

M

M¯

)1−η

years

Since η ∼ 3.5, the main-sequence lifetime of a star is a strong
function of its mass.

When the mass fraction of hydrogen in a stellar core declines to
X ∼ 0.05 (point 2 on the evolutionary track), the main-sequence
phase has ended, and the star begins to undergo rapid changes.

• First, the entire star begins to contract. The core energy gener-
ation for this stage remains approximately constant, but the star
increases its luminosity due to the conversion of gravitational en-
ergy to thermal energy. Simultaneously, the smaller stellar radius
translates into a hotter effective temperature. For higher mass
stars, the mass fraction of the convective core begins to shrink
rapidly. On the diagram, the star travels from point 2 to 3. At
point 3, the mass fraction of hydrogen in the core is ∼ 1%.

• When hydrogen fusion in a convective core stops, the core’s left-
over temperature gradient causes energy in the center to flow out-
ward. Consequently, the core may temporarily cool, and begin
to contract rapidly, turning some gravitational energy to ther-
mal energy. The combination of these two effects makes the core



isothermal. This condition slows the core’s contraction, since the
demand for energy flow from the center is decreased. (In stars
with M > 10M¯, the core temperature will never actually de-
crease, while in stars with radiative cores, core contraction won’t
actually occur, since it has been adjusting to the decrease in
hydrogen all along.)

• While this is happening, the hydrogen rich material around
the core is drawn inward and eventually ignites in a thick shell,
containing ∼ 5% of the star’s mass. Much of the energy from
shell burning then goes into pushing matter away in both direc-
tions. As a result, the luminosity of the star does not increase;
instead the outer part of the star expands. This “thick shell”
phase continues with the shell moving outward in mass, until
the core contains ∼ 10% of the stellar mass (point 4). This is
the Schönberg-Chandrasekhar limit. Stars with larger (by mass
fraction) cores will reach this point faster than stars with small
cores.)

• Light elements such as lithium, boron, and beryllium fuse at
temperatures much lower than those of the central core. As a
result, by the time a star has moved off the main sequence, these
elements have been destroyed over the inner 98% of the star.



The evolution of stars in the HR diagram. For low-mass stars,
the tracks only extend to the helium flash.



The evolution of the stellar cores. The density is given in g cm−3.



The Schönberg-Chandrasekhar Limit

At first, a star evolving off the main sequence will roughly follow
the predictions of homology. Specifically, its luminosity will in-
crease due to the increase in the star’s mean molecular weight,
while its radius will remain roughly constant. This will con-
tinue until the hydrogen fraction X < 0.05. When the hydrogen
runs out, the star’s structure must change dramatically (non-
homologously).

To see this, consider a star whose envelope is still behaving in an
homologous fashion, but with a core that has no nuclear burn-
ing. If the core is not producing any luminosity, then to be in
near thermal equilibrium, it must be approximately isothermal.
(Otherwise, the energy will diffuse outward.) We can compute
the maximum surface pressure an isothermal core of temperature
Tc can withstand from hydrostatic equilibrium and the virial the-
orum. From hydrostatic equilibrium
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If we multiply this equation by 4πr3dr, and integrate by parts
over the core, the equation becomes
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At the surface of the core, the equation of state is close to that
of an ideal gas, so P/ρ ∝ T . The pressure at the surface of the
core can therefore be re-written as

P (Rc) = K1
McTc

R3
c

− K2
M2

c

R4
c

(21.1.1)

The maximum surface pressure a core with size Rc and Mc can
have can then be found by setting the derivative of P (Rc) to
zero, i.e.,
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(21.1.2)

and

P (Rc) < K4
T 4
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(21.1.3)

Meanwhile, we can independently compute the pressure at the
core-envelope boundary under the assumption that the envelope
physics is homologous. Recall from (17.4) that

P ∝ M2r−4 (21.1.4)

Now if we assume an ideal gas equation of state (α = δ = 1),
then from (17.13),
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If we add these equations, we get
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which gives
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MT
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(21.1.5)

Combining this with (21.1.4), we get

P ∝ K5
T 4

c

M2
T

(21.1.6)

Thus, the pressure at the surface of the isothermal core is inde-
pendent of the size of the core (Rc), but is inversely proportional
to M2

c (from the hydrostatic equilibrium) and M2
T (from homol-

ogy). Setting (21.1.3) and (21.1.6) equal, we get

MC

MT
<

(

K4

K5

)1/2

= qsc

In other words, under the assumption of virial equilibrium and
homology, there’s a maximum limit to the mass fraction of an
isothermal core. Once Mc/MT ∼ 0.1, no stable configuration
exists. The star must adopt a different equilibrium.



The Hertzsprung Gap and the Subgiant Phase

• When the Schönberg-Chandrasekhar limit is reached, the star
must change its structure. First, core contraction begins to occur
on the Kelvin-Helmholtz timescale, and the rapid increase in core
density causes an increase in the temperatures and densities in
the shell surrounding the core. The result is a strong increase
in the rate of nuclear reactions in the shell, which again pushes
matter away on both sides. The result is a very thin zone of
hydrogen burning; as the star evolves from point 4 to point 5,
the mass of the shell will decrease from ∼ 3% to ∼ 0.5% the mass
of the star.

• Although the reaction rates in the shell increase as the shell
narrows (due to the strong temperature dependence of nuclear
reaction rates), this is compensated for by the decrease in the
shell mass. As a result, the total luminosity produced by the
shell decreases slightly. Moreover, much of this energy goes into
mechanical work; because the specific heat of the star is nega-
tive, the increased temperature causes the envelope to expand
and cool. About half the energy needed to expand the envelope
comes from shell burning; the other half comes from the envelope
itself, as it adjusts to the new conditions. The envelope cooling
rapidly moves the star to the right in the HR diagram, across the
“Hertzsprung Gap,” until it reaches the limiting Hayashi line.

• The effective temperature where the star begins to ascend the
giant branch is approximately independent of mass. It is, how-
ever, very sensitive to metallicity, since the electrons provided
by metals are providing most of the surface opacity via H− ab-
sorption. Note also that because the convective envelope is large,
an uncertainty in the mixing length translates into a significant



displacement of position of the giant branch, with

δ log Teff ∼

[

0.02 log
L

L¯

+ 0.143

]

δ log α ≈ 0.16 log α

• While in the shell burning phase, the rapidly increasing central
densities and temperatures can temporarily provide an additional
source of nuclear energy for the star. While the core of the star
is mostly helium, there are some trace amounts of metals, in
particular CNO. Because CNO burning has gone to equilibrium,
most of the CNO nuclei will be in the form of 14N. As the
core contracts and the conditions becomes more extreme, 14N
can fuse with helium, via the reaction 14N(4He, γ)18F(β+, ν)18O.
This rapidly changes all the 14N in the star to 18O, and gives
the star a little extra life. The place where this occurs depends
on the mass of the star. Stars with M > 9M¯ fuse 14N in the
Hertzsprung Gap; as a result, they increase their luminosity on
their trip across the HR diagram. Stars with M ∼ 5M¯ burn
14N on the giant branch. For stars with M < 3M¯, 14N burning
on the giant branch actually causes them to temporarily descend

the branch, as the core-shell region adjusts to the new energy.
None of these effects is directly observable, but 14N will increase
the lifetime of a subgiant star slightly.



The Giant Branch

On the giant branch, the size of the hydrogen-burning shell contin-
ues to decrease. However, unlike the thick-burning shell phase, the
decrease in mass is more than offset by the higher nuclear reaction
rates. To appreciate this, consider that the luminosity produced by

shell burning depends almost exclusively on the mass of the core.

The reason for this comes from the equation of hydrostatic equi-
librium: at the surface of a compact, highly condensed core

dP

dM
= −

GM

4πr4
¿ 0

Thus the pressure drops by many orders of magnitude in just a
small region. The extended envelope above the shell is virtually
weightless, and has almost no influence on the properties of the
shell.

The dependence of luminosity on core mass can be estimated from
homology. If we assume the density, temperature, pressure, and
luminosity of a burning shell go as some power of the mass and
radius of the core, i.e.,
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(21.2.1)

and use homology on the ideal gas law (which is a good approxi-
mation for regions outside the core), then
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giving
τ1 = φ1 + ψ1 and τ2 = φ2 + ψ2 (21.2.2)

Similarly, the Eulerian equation of hydrostatic equilibrium yields
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When integrated to a region outside the shell (with negligible pres-
sure), this equation and (21.2.2) imply

τ1 = φ1 + 1 and τ2 = φ2 − 1 (21.2.3)

In Eulerian coordinates, the luminosity equation is
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If we substitute using ε = ε0ρ
λT ν , then
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Again, we can integrate over the shell until energy generation van-
ishes, and re-write the density and temperature in terms of the
core mass and radius to get

σ1 = (λ+1)φ1 +ψ1ν and σ2 = (λ+1)φ2 +ψ2ν +3 (21.2.4)

Finally, we can write the equation for the radiative energy trans-
port that will take place in the region immediately adjacent to the
shell.
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Substituting for κ using κ = κ0P
sT t, we get
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This can once again be integrated to a region with negligible tem-
perature, and re-written in terms of the core parameters. The
result is

(4 − t)ψ1 = σ1 + φ1 + sτ1 and (4 − t)ψ2 = σ2 + φ2 − 1 + sτ2

(21.2.5)

Equations (21.2.2) - (21.2.5) form a set of 8 (non-linear) equations
with 8 unknowns. With (a great deal of) effort, these can be solved
to give

φ1 = −
ν − 4 + s + t

s + λ + 2

ψ1 = 1

τ1 = 1 + φ1

φ2 =
ν − 6 + s + t

s + λ + 2

ψ2 = −1
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(s + t)(λ + 1) + 3(s − λ) − ν(s + 1)

s + λ + 2
(21.2.6)



Note how the luminosity of a shell burning star behaves. For elec-
tron scattering (s = t = 0) and CNO burning (λ = 1, ν = 13),

L ∝ M7
cR

−16/3
c ; for electron scattering and helium burning (λ = 2,

ν = 40), L ∝ M13
c R

−23/2
c . Unlike core burning, the luminosity of

a shell burning star depends both on the core mass and the en-
ergy generation mechanism. Note also that the temperature of the
shell has a very simple relation reflective of the virial theorum:
T ∝ Mc/Rc.

We can make further progress by relating the mass of the stellar
core to its radius. If the core were fully degenerate, this would
be easy: we could use the mass-radius relation for white dwarfs.
However, the region immediately below the shell is not degenerate
(due to the high temperature of the shell), and, although this re-
gion can have a negligibly small mass, it can occupy a substantial
fraction of the core’s volume. Thus, a better approximation for the
core mass-core radius relation of a shell burning star is a two zone
model consisting of a degenerate core (obeying a polytropic mass-
radius relation), and an isothermal, ideal gas transition region.

For the transition region, we can combine the ideal gas law with
hydrostatic equilibrium to get
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This can be integrated from the top of the core, Rc, to the place
where electron degeneracy takes over, rt. The result is

ln ρt − ln ρc = −
Gµma

k
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TRc

) {
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}

(21.2.7)

This equation can quickly be simplified. First, since the transition
region is at the same temperature as the shell, then from (21.2.6),



T ∝ Mc/Rc, and the term in parenthesis is a constant (C1). Next,
we can estimate ρt by equating the ideal gas and electron degen-
eracy density laws. From (7.3.8), we have
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2
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Similarly, we can substitute for rt using the polytropic mass-radius
relation for white dwarfs
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and for ln ρc using the homology relations for (21.2.6)

ln ρc = C3 + φ1 lnMc + φ2 lnRc

This gives us a relation between Rc, T , µ, µe, and Mc
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(21.2.9)

For reasonable values, this equation yields

d lnRc

d lnMc
∼ −0.16 (21.2.10)

(a rather weak dependence). The net result is that

L ∝ Mz
c (21.2.11)



with z ∼ 8 for CNO burning shells, and z ∼ 15 for helium burning
shells.

Once we have an equation for the luminosity of a shell burning star
as a function of core-mass, it is then relatively easy to calculate
the luminosity of the star as a function of time. Consider that as
a shell burning star evolves, it continually deposits more mass on
its central core, with

dMc

dt
=

L

XQ

where X is the mass fraction of the fuel, and Q the amount of
energy generated by one gram of material. Thus
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0
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K

∫ MC1

MC0

M−zdM (21.2.12)

where t = 0 is the fiducial time when L = L0, and K is the constant
of proportionality relating L to Mc. Equation (21.2.12) is easily
integrated to yield
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which, after a bit of manipulation, becomes

L(t) =
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(21.2.13)

This is a sharply increasing exponential! The star’s evolution ac-
celerates dramatically as it ascends the giant branch.




