
Other Facets of Giant Branch Evolution

• As the envelope cools due to expansion, the opacity in the enve-
lope increases (due to Kramers law), so by the time the star reaches
the base of the giant branch (point 5), convection dominates energy
transport. The thermal energy trapped by this opacity causes the
star to further expand. (Note: the expansion comes solely at the
expense of thermal energy of the envelope.) Meanwhile, near the
surface, H− opacity dominates, and, as the star cools, the surface
opacity becomes less. The energy blanketed by the atmosphere
escapes, and the luminosity of the star further increases.

• As the star ascends the giant branch, the decrease in envelope
temperature due to expansion guarantees that energy transport
will be by convection. The convective envelope continues to grow,
until it almost reaches down to the hydrogen burning shell. Recall
that in higher mass stars, the core decreased in size during main-
sequence evolution, leaving behind processed CNO. As a result,
the surface abundance of 14N grows at the expense of 12C, as the
processed material gets mixed onto the surface. This is called

the first dredge-up. Typically, this dredge-up will change the
surface CNO ratio from 1/2 : 1/6 : 1 to 1/3 : 1/3 : 1; this result is
roughly independent of stellar mass.

• As the hydrogen-burning shell approaches the convective enve-
lope, the latter retreats slightly, due to the radiation pressure, leav-
ing behind a chemical discontinuity. When the hydrogen burning
shell reaches this discontinuity, the luminosity of the giant star tem-
porarily decreases, due to the abrupt changes in the mean molec-
ular weight and the opacity. (This is easily demonstrated via shell
homology.)

• For stars with M > 2.25M¯, the central core temperature con-
tinues to increase as the star ascends the giant branch. However,



in stars with M < 2.25M¯, electron degeneracy becomes impor-
tant. This causes a drop in the opacity (due to heat conduction by
electrons) and allows the core to radiate its energy more readily.
At the same time, as the core compresses and the Fermi energy
rises, some of the core’s thermal energy must go into increasing
the non-thermal kinetic energy of the electrons. Consequently, the
core temperature drops (and, because of the decreased opacity, the
core becomes even more isothermal).

• The drop in core temperature for low mass stars due to electron
degeneracy is only temporary; after a while, the central tempera-
ture once again increases. However, because electron conduction
is now important, the temperature rise is not a great as it would
be in the ideal gas case. (The energy is transported away faster.)
Low mass stars will rise high above the base of the giant branch
before they ignite helium.



Helium Burning

Because there is no stable nucleus with A = 5 or A = 8, it is
extremely difficult to get helium to fuse. In fact, there is no chain
of light element reactions that can hurdle the A = 8 gap. Thus, to
fuse helium, you must bring 3 nuclei together.

The key to fusing helium is the 8Be nucleus. The ground state en-
ergy of the 8Be nucleus is 91.78 keV higher than the ground state
energy of two 4He nuclei, hence 8Be decays very quickly. How-
ever, because this energy difference is small (recall that most of
the time we are working in MeV units), the decay is not instan-
taneous: the 8Be nucleus has a lifetime of τ = 2.6 × 10−16 sec.
This is ∼ 105 times longer than the duration of a normal scat-
tering encounter, and sufficiently long so that some 8Be will exist
in the star. Specifically, the amount of 8Be will be given by the
equilibrium concentration of the reaction

4He + 4He −→
←−

8Be (22.1)

Thus, in principle, some triple-alpha fusion can occur.

Although it is possible compute the rate of fusion for helium us-
ing its quantum mechanical cross-sections, a simpler way is take
advantage of the fact that 8Be will have its equilibrium concentra-
tion. The physics which describes the equilibrium concentration of
nuclear species is identical to that describing the concentration of
atomic species. We can therefore calculate the abundance of 8Be
using the nuclear equivalent to the Saha equation. According to
the Saha equation, the fractional abundance of ionized atoms is
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where ue = 2 is the statistical weight of the electron. The equation
for the equilibrium abundance of 8Be has the same form, with the
“ionized” state being that which occurs when one 4He nucleus is
“ionized” from the other. Since 4He and 8Be are both in their
ground state (with zero spin), their statistical weights are unity,
so ui = ui+1 = ue = 1. Furthermore, recall that the 2πmekT
term comes about from considering the momenta of free electrons
relative to the atom. Here, the free particle is another 4He nucleus,
so clearly the appropriate mass to use is the reduced mass of the
system.
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Thus the nuclear Saha equation for 8Be is
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where fαα is the electron shielding factor. Note that the energy
of the two helium nuclei is 91.78 keV smaller than that of the
beryllium nucleus. Thus χ is negative, and the exponent of the
Saha equation is positive. Plugging in the numbers for a typical
core on the giant branch (ρ ∼ 105 g cm−3 and T ∼ 108 K) results
in ∼ 1 8Be nucleus for every 109 helium nuclei.

With the abundance of 8Be now known, the next step in com-
puting the triple-alpha reaction rate is to consider the reaction
8Be(α, γ)12C. This is a resonant reaction that goes to the excited
state 12C∗. (Actually, if it were non-resonant, there would never
be enough 8Be to make it proceed.) However, once in the 12C∗

state, the particles encounter another problem.



There are three ways out of the 0+ excited state of 12C. The first,
a direct decay to the ground state is highly forbidden (since the
states have the same spin). The second, a decay to the ground
state via the intermediate 2+ state is also very unlikely. Conse-
quently, the most likely scenario (by far) is for the 12C∗ nucleus to
spontaneous decay back into 8Be + 4He. Therefore, the compu-
tation of the triple-alpha reaction rate requires knowing both the
amount of 12C∗ present and the rate 12C∗ decays to ground state
12C.

The former computation is simple: the 8Be(α, γ)12C reaction will
happen quite rapidly (at least, when T >

∼ 108 K); similarly, the
inverse decay reaction will also be rapid. As a result, the two
reactions will come to statistical equilibrium, and once again, the
nuclear Saha equation can be applied. The amount of 12C∗ will



thus be
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where again, fαBe is the electron shielding factor, and µαBe is the
reduced mass for the encounter.

Combining this with (22.2) we get
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we have
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where χ = 379 keV is the net energy difference between three 4He
nuclei and 12C∗.

Finally, to compute the rate of 12C∗ decays to ground state, we
can use uncertainty principle, which says that the decay rate of a
transition, λ, is related to its energy width, Γ by

Γ τ =
Γ

λ
∼ h̄ (22.5)

For the 0+→2+ transition of 12C, Γ ∼ 2.8×10−3 eV, which means
that a single 12C∗ would have to wait over 100,000 years for this



decay! Nevertheless, at any instant, there are a lot of 12C∗ nuclei;
the reaction rate per unit volume is given by N(12C
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Since three 4He are destroyed for every 12C fusion, the lifetime of
4He against the triple-alpha process is

τ3α =
N(4He)

3r3α
(22.7)

and if the energy per reaction is Q = 7.275 MeV, then the net
energy per gram produced by the triple-alpha process is

ε3α = r3αQ = 5.08 × 108 fαα fαBe
ρ2Y 3
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Note that the reaction depends on the square of the density: this
makes sense since it is essentially a three-body reaction. Note also
that the temperature coefficient is
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T9
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which, for a characteristic core temperature of T ∼ 108 K implies
ε3α ∝ T 40. Thus, helium burning can be explosive!

(Note that the above analysis is only correct for temperatures above
∼ 108 K. At lower temperatures, the 8Be and 12C reactions are suf-
ficiently slow so that equilibrium may not be achieved. Moreover,
at lower temperatures, electron screening begins to move from the



weak screening to the strong screening limit. This makes the cal-
culation much tougher.)

Once 12C is formed, another 4He capture can take place to make
16O, while releasing Q = 7.162 MeV. Unfortunately, the rate for
this reaction is extremely uncertain. It is presumed to proceed
through the high-energy tail of a nuclear resonance whose proper-
ties are not well known. The rate is thus uncertain by at least a
factor of two. A best guess at the energy generation rate is

εα12C = 1.5 × 1025 ρ Y X12C
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Clearly, the rate at which 16O forms will increase with time, as the
abundance of 12C increases.

If 16O is made, then it is possible to make 20Ne as well, via fusion
with another 4He nucleus. At the nominal core temperature of
108 K, this reaction takes place through the extreme tails of two
different nuclear resonances which bracket the Gamow peak. As
a result, the non-resonant reaction formula is usually used. Be-
cause the Coulomb repulsion is significant for 16O, and because
16O(4He, γ)20Ne requires a fair amount of 16O to already exist, this
reaction takes place at a lower rate than the other two reactions.
However, as the core temperature increases, the 20Ne resonance at
the high end of the Gamow peak becomes more important, and
the rate will increase. (The high energy resonance is not that im-
portant for red giant branch burning, but it can be important for
later stages of stellar evolution.) The Q-value for this reaction is



Q = 4.734 MeV; the reaction rate is

εα16O = 6.69 × 1026 ρ Y X16O
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