
White Dwarf Stars

After nuclear burning ceases, a post-AGB star rapidly becomes a
white dwarf. Although gravitational contraction will provide some
luminosity for a while, the luminosity evolution of the star can be
well modeled as simple cooling for a highly conductive isothermal,
degenerate core blanketed by a radiative non-degenerate envelope.

A simple way to model the cooling of a white dwarf is to use a two-
zone model consisting of a degenerate, non-relativistic, isothermal
core covered by a thin layer of ideal gas. From (7.3.8), the density
at the transition region will be
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where Tc is the core temperature. From the ideal gas law, the
pressure at this location will be
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Now consider the behavior of a thin radiative atmosphere, which
is neither a source nor sink of luminosity. Since this layer is thin,
the mass of the atmosphere is negligible. Hence, if we adopt an
opacity law of the form
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Following our analysis of the radiative atmospheres of normal stars,
we can integrate this expression from the stellar photosphere down
to the transition layer and obtain
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Since the pressure and temperature at the transition region will
be much larger than at the surface, the terms in the parentheses
vanish, and
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If we equate this equation to (25.1.2), we get an expression for the
luminosity and temperature of the star in terms of the temperature
of the central core
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For a Kramers opacity which is dominated by bound-free absorp-
tion, s = 1, t = −7/2, and κ0 ≈ 4 × 1025 cm2-g−1. Moreover, by
(5.1.3), (5.1.6), and (5.1.7), µe ≈ 2, and µ ≈ 1.75, so

L = C2 MT T 7/2
c (25.1.6)

(where C2 ∼ 5 × 10−30, if the mass and luminosity are in solar
units).

Next, consider the reaction of the core to its energy loss. The core
is already degenerate, so gravitational contraction will not occur.
However the core will cool, and the amount of this cooling will be
given by the specific heat.
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From this, we can compute the cooling curve of the star. If we take
the derivative of (25.1.6) with respect to time, write it in terms of
luminosity and mass, and then substitute in for the temperature
derivative using (25.1.7), then
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To calculate the specific heat, we can take advantage of the fact
that under degenerate conditions, the specific heat of electrons is
negligible (see Chandrasekhar, Stellar Structure, if you really want
to know the details). Thus cV is given almost entirely by the ions
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If we plug in the numbers, then in solar units
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Note that µI ∼ 12 if the white dwarf is entirely carbon.



Finally, to locate the star in the HR diagram we can again draw on
our knowledge of radiative envelopes. The temperature structure
of an atmosphere with negligible mass is given by
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In this equation, the core temperature, Tc, is given as a function of
luminosity by (25.1.6), the core radius comes from the polytropic
relation between mass and radius (16.1.4), and the photospheric
radius is related to the star’s luminosity and photospheric temper-
ature by the blackbody equation. Thus
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Equations (25.1.12) is quadratic, but since the second term in the
discriminant is much greater than 1, it essentially reduces to a
linear function.





This simple cooling law reproduces the observed distribution of
white dwarfs quite well. The cooling timescale derived above is a
factor of ∼ 2 too fast (which probably comes from our definition of
the transition region). However, the behavior of the cooling curve,
and its position in the HR diagram is accurate. There are several
features to note:

• The starting point for the calculation was L = 1000L¯ at t = 0,
but this makes very little difference to the calculation. (This can
be seen from (25.1.9) quite easily.) Thus the term L0 is usually
dropped from cooling formulae.

• Each tick mark in the figure represents 107 years. Note that white
dwarfs fade quickly at first; but after a while, their evolution is
exceedingly slow. The last point plotted is after 1010 years; thus the
coolest white dwarfs in existence should still have a temperature
of >

∼ 6500 K.

• The cooling curves for different mass stars are offset slightly. By
matching the position of a white dwarf (or an evolved planetary
nebula central star) with its position in the HR diagram, it is pos-
sible to estimate its mass.

• From a white dwarf’s location in the HR diagram, it is possible to
estimate how long it has been cooling, i.e., its age. By examining
the luminosity function of white dwarfs in the Milky Way, it is
possible to get an independent estimate of the age of the Galaxy.



Realistic Models of White Dwarfs

There are a number of processes associated with white dwarfs that
are difficult to model. As a result, our understanding of their
cooling is not as complete as we would like.

• The composition of white dwarfs is not well known. Most are
clearly a mixture of carbon and oxygen, but the proportion of these
two elements is not well constrained. A few massive white dwarfs
in nova systems show evidence of heavy elements; neon-oxygen-
magnesium novae are relatively common.

• The surface layers of white dwarfs vary greatly. These differences
are reflected in their spectral types

Type Characteristics

DA Balmer Lines only; no He I or metals present
DB He I lines only; no H or metals present
DC No lines of any type present
DO He II present (extremely hot)
DZ Only metal lines; no H or He present
DQ Carbon lines present

Presumably, some of these differences depend on the details of the
star’s AGB evolution. However, it is still uncertain whether a DB
white dwarf is born with no hydrogen, or whether trace amounts
of hydrogen exist which later float to the surface.

Note that this is not the only spectral classification scheme for
white dwarfs. In particular, several schemes exist which connect
the spectral features of white dwarfs to planetary nebulae nuclei.



Unfortunately, the classification criteria are not standard. (In fact,
many are self-contradictory!)

• As a white dwarf cools, solid-state effects becomes more im-
portant (i.e., crystallization can occur). This greatly changes the
equation of state.

• Many intermediate temperature white dwarf atmospheres do con-
vect. Thus, simple radiative energy transport is not applicable to
all white dwarfs. This changes the cooling curve somewhat, and
can change the surface abundances.

• It is an observed fact that the overwhelming majority of white
dwarfs have masses near ∼ 0.6M¯, and there is very little disper-
sion about this mean. This is usually attributed to a very slowly
varying initial-mass final-mass relation for stars. But the actual
data is poor.



The locus of white dwarfs in the HR diagram.

Cooling models for white dwarfs in the HR diagram.



The luminosity function of nearby white dwarfs.

The observed initial-mass final-mass relation (with error bars).



The mass distribution of nearby white dwarfs.



Pulsating Stars

Every star in the HR diagram has a natural (fundamental) fre-
quency for pulsation. To understand this, consider a pulsation as
the resonance of a sound wave. To first order, the speed at which
a sound wave traverses a star is
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where γ is the ratio of the specific heats. Now for a first approxi-
mation, let’s assume a constant density star. The pressure at any
point in such a star can be found by directly integrating
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where R is the stellar radius. The period of pulsation is then
roughly the time it takes for this sound wave to cross the star, i.e.,
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There is only one variable in this equation — the density. To a
good approximation, this holds true for all stars pulsating (radi-
ally) in the fundamental mode: the period of the star is inversely
proportional to the square root of the average density. In other
words

Π〈ρ〉1/2 = Q (25.2.3)

where Q is some constant.



An alternative, and perhaps clearer way of seeing this is to consider
the recovery time of a pulsating star if gravity is the restoring force.
Under gravity, the infall time for a pulsating star is just the freefall
timescale, i.e.,
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Since this freefall is one-half the period,
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In other words, the temperature-luminosity diagram (which has
mass as the third dimension) can just as easily be plotted as a
period-luminosity diagram (with mass as the third dimension).



Pulsation Mechanisms

In theory, there are three mechanisms which can cause mechanical
instability in a star.

The ε mechanism: If the center of the star is compressed slightly,
the nuclear reaction rates will go up, causing an increase in expan-
sion. The expansion can then decrease the reaction rates, cool the
central core, and cause contraction.

The κ mechanism: Suppose the opacity in some region of a
star were to increase with density. Upon compression, the material
would absorb more energy, heat up, and expand. In the ensuing
expansion, the opacity would decrease, heat would be lost from the
system, and the material would fall back down. Pulsation would
be driven by changes in the opacity.

The γ mechanism: If, during compression, a region of the star
were to heat up less than its surroundings, heat would flow into
it. This heat could then cause the region to expand, and in the
expansion, the excess heat could be returned to its surroundings.
The specific heat of the gas would drive pulsation.

In practice, the ε mechanism is not an effective way of driving pul-
sations in normal stars. Although the core is unstable to ε-driven
pulsations, the amplitudes involved are not large enough to be de-
tectable. The exception occurs in extremely massive (M > 90M¯)
stars, where the sensitivity of the ε-mechanism to temperature is
enough to cause large oscillations and possibly disrupt the star.

Under most circumstances, stars have Kramer-law type opacities,
and have an ideal-gas equation of state. Thus

κ ∝ ρT−3.5 ∝ ρ−2.5



which means that the κ mechanism will not work. However, in
transition regions where stellar material is only partially ionized,
the energy produced by compression will go into increasing the ion-
ization fraction, rather than the thermal motion of the particles.
When this happens, the κ mechanism is effective. Moreover, dur-
ing compression, this region of partial ionization will be somewhat
cooler than normal, due to the energy lost to the ionization pro-
cess. Thus, heat will flow into the region and the γ mechanism will
also operate.

The κ and γ mechanisms can only drive pulsations in certain re-
gions of the HR diagram. For pulsations to occur, there must be a
region in the star where a substantial fraction of the hydrogen (or
helium) is partially ionized. If the star is too hot, this zone will be
located very near the stellar surface, where the density is too low
to drive stellar oscillations. On the other hand, if the star is too
cool, convection will occur at the surface. Since the energy trans-
ported by convection is proportional to the amount of matter being
moved, during compression more material will move, the heat flow
will increase, and the effectiveness of the energy damming will be
decreased. Thus, there is an “instability strip” in the HR diagram.

(Actually, there are several instability strips in the HR diagram.
The classic instability strip associated with Cepheids, RR Lyr stars,
δ Scuti (main sequence) stars, and ZZ Ceti white dwarfs, is due to
the partial ionization (and recombination) of He II. At the extreme
red edge of the HR diagram is the hydrogen and He I instability
strip; in this area are Mira stars and other Long Period Variables.
Far to the blue in the HR diagram is an instability strip associ-
ated with the partial ionization of carbon and oxygen. Of course,
this latter zone is not important for normal stars, since CO is usu-
ally not abundant enough to drive pulsations. However, hydrogen-
deficient post-AGB stars (K1-16 type planetary nebula nuclei and
PG 1159 white dwarfs) are susceptible to oscillations.)



Location of the instability strips in the HR diagram.


