
The Carbon Flash

Because of the strong electrostatic repulsion of carbon and oxygen,
and because of the plasma cooling processes that take place in a
degenerate carbon-oxygen core, it is extremely difficult to fuse car-
bon. As long as the core remains under the Chandrasekhar limit,
degeneracy pressure can support the star, and nuclear reactions will
not occur. Stars with initial masses M <

∼ 7M¯, will probably stay
under this limit, and thus their nuclear evolution will end with car-
bon.

If helium burning creates a core that is greater than the Chan-
drasekhar mass, the core will collapse, and carbon fusing will occur.
In objects with initial masses 8 <

∼ M <
∼ 10M¯, this fusion will oc-

cur under extremely degenerate conditions; the result is an explosive
carbon flash. (The timescale for this burning will be milliseconds!)
A deflagration front will probably develop, in which the shock wave
itself does not ignite carbon, but instead, carbon is fused by the
energy transported behind the shock front. (The alternative to this
is a detonation front, where the shock itself ignites the fuel.) Either
way, the star does not have time to adjust to the energy input, and
the energy released (Q ∼ 2.5×1017 ergs gm−1) is enough to disrupt
the entire core.



Core evolution for high mass stars after helium-core burning.



Carbon Burning

In higher mass stars, the core temperatures are sufficient to fuse
carbon under non-degenerate conditions. When this happens a 12C
nucleus fuses with another 12C nucleus to form a compound excited
state of 24Mg through one of many resonances that exist. The 24Mg
then decays through one of many channels:

12C + 12C −→ 24Mg + γ Q = 13.93 MeV

−→ 23Na + 1H Q = 2.238 MeV

−→ 20Ne + 4He Q = 4.616 MeV

−→ 23Mg + n Q = −2.60 MeV

−→ 16O + 4He + 4He Q = −0.11 MeV

(26.1.1)

with the electromagnetic and 3-body channels having the lowest
probabilities, and the neutron reaction requiring the highest particle
energy. Thus, to first order, 12C fuses to 23Na and 20Ne. However
the protons and α particles quickly fuse as well, with many possible
combinations. The most likely are

12C + 1H −→ 13N + γ

13N −→ 13C + e+ + νe

13C + 4He −→ 16O + n (26.1.2)

(This last reaction is important, since it creates a free neutron,
which can be used to synthesize heavier elements.) In addition, the
α particles may also interact with 12C, 16O, 20Ne, and 24Mg. The
net result is that even though 12C fusion itself does not produce a



large amount of energy, the additional reactions raise the amount
of energy liberated to ∼ 13 MeV per reaction.

Although carbon and oxygen are roughly in equal abundance in the
core, reactions between 12C and 16O are not important, due to the
additional coulomb barrier. (By the time the temperature is high
enough to fuse carbon with oxygen, all the carbon is gone.) Thus,
the next series of reactions that take place are resonance reactions
involving two oxygen nuclei:

16O + 16O −→ 32S + γ Q = 16.539 MeV

−→ 31Ph + 1H Q = 7.676 MeV

−→ 31Si + n Q = 1.459 MeV

−→ 28Si + 4He Q = 9.593 MeV

−→ 24Mg + 4He + 4He Q = −0.393 MeV

As in the case of carbon burning, the protons, neutrons, and α
particles produced by this reaction can interact with a host of other
nuclei, and thus a large reaction network must be analyzed. The
primary product of oxygen burning is 28Si, but a wide range of
elements are produced.



Photodisintegration

At temperature of T ∼ 109 K (which is typical of carbon and oxy-
gen burning), nuclei can become disassociated by the thermal pho-
ton bath. This is the exact analog of photo-ionization of electrons
(except, of course, that the temperatures are very much higher).

Photodisintegration rates can be calculated in the exact same man-
ner as photoionization rates. Consider the reaction

X + Y −→
←− Z (26.2.1)

In thermodynamic equilibrium, the photodisintegration rate, λγ ,
must be related to the reaction rate λXY by

NZλγ = NXNY λXY

and the ratios of the species X, Y , and Z must be given by the
Saha equation
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where the G values are the nuclear partition functions, µ is the
reduced mass of the system, and Q is the binding energy. Thus we
have
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where A is the reduced atomic weight, and Q is in MeV.



During carbon-oxygen burning, 13N and 20Ne are the principal vic-
tims of photodisintegration. At temperature T9 > 0.75, the pho-
todisintegration of 13N is faster than its beta decay, and thus the
concentration of 13C is sharply reduced. Similarly, at T9 > 1.3, the
photodisintegration of 20Ne into oxygen and helium is greater than
its creation rate from oxygen and helium. Thus

20Ne + γ −→ 16O + 4He

Interestingly, the α particle produced by this reaction is now free to
fuse with a different 20Ne nucleus, giving

20Ne + 4He −→ 24Mg + 4.583 MeV

Thus, 20Ne only exists for a short time in the star: it is made during
carbon burning at T9 ∼ 0.7 and destroyed during carbon burning
at T9 ∼ 1.3.



The nuclei which participate in the reaction network during silicon
burning. The solid dots designate stable nuclei (i.e., observables);
the open dots denote unstable nuclei. (See Truran, Cameron, &
Gilbert 1966, Can. J. Phys., 44, 576.)



Photodisintegration Rearrangement

Since carbon and oxygen burning generate products such as 24Mg,
28Si, and 32Si, it is tempting to consider the next step where these
elements get fused. However, the coulomb barrier for these species
is so large, that photodisintegration will occur before their fusion
temperature is reached. Instead, further elemental fusion occurs via
protons, neutrons, and α particles that have been photodisintegra-
tion from nuclei with small binding energies.

Now consider the reaction specified in (26.2.1). If the photon bath is
high, this reaction will attempt to come to equilibrium, and establish
the abundance ratios given by the nuclear Saha equation (26.2.2).
However, once removed from nucleus Z, particle X may also fuse
with a different nucleus, P , i.e.,

P + X −→ Q

and nucleus Q may have a binding energy high enough to resist
photodisintegration. Thus the abundance of element Q may be
increased, and that of element Z may be decreased by photodisinte-

gration rearrangement. This may, or may not create nuclear energy
(since many of the reactions involve energy losses from neutrinos),
but it will certainly relocate nucleons into those nuclei that are the
most tightly bound.

The results of photodisintegration rearrangement depend on the
exact temperature and timescale of the burning process. Many
of the species formed during the process will be radioactive, and
their positron-decays will reduce the total proton-to-neutron ratio.
(Again, the importance of these decays will depend on the timescale
of the burning through their temperature dependence.)



The computation of nucleosynthesis during photodisintegration re-
quires following a series of long differential equations containing all
the reactions that can create or nuclei, i.e.,

dN(A, Z)

dt
= −λγ(A, Z)N(A, Z) + λγ,n(A+1, Z)N(A+1, Z)

+ λγ,p(A+1, Z+1)N(A+1, Z+1)

+ λγ,α(A+4, Z+2)N(A+4, Z+2)

− N(A, Z)N(n) λn(A, Z)

− N(A, Z)N(p) λp(A, Z)

− N(A, Z)N(α) λα(A, Z)

+ N(A−1, Z)N(n) λn(A−1, Z)

+ N(A−1, Z−1)N(p) λp(A−1, Z−1)

+ N(A−4, Z−2)N(α) λα(A−4, Z−2)

− λβ(A, Z)N(A, Z)

+ λβ(A, Z−1)N(A, Z−1) + . . .

(Note that the above equation does not even include reactions such
as X + p −→ Y + n, X + n −→ Y + α, etc.) Much of the work in
setting up the network of equations is in deciding which reactions
are important, and which can be neglected.)

At oxygen burning temperatures, nuclei such as 32S, 31Ph, and 30Si
are all destroyed in favor of 28Si, which is the most tightly bound
nucleus in the intermediate mass range. Once the temperature be-
comes high enough to photodisintegrate 28Si (T9

>
∼ 3), a host of

(α, γ), (p, γ), (n, γ) reactions (and their inverses) begin simulta-
neously. This is the Silicon Burning phase. Some of the fastest



reactions run to equilibrium, but most reactions will not reach this
stage. Thus, the results of silicon burning depend on how far to-
wards completion the reactions run. During this time, there is also
a slow leakage of nuclei from the intermediate-mass region to the
iron group (which are the most tightly bound nuclei).

As silicon burning nears completion, the nuclei come closer and
closer to establishing nuclear statistical equilibrium. In this case,
the nuclear Saha equation defines the abundance of each species.
This has a very simple form. Consider that, from the Saha equation,
the abundance ratio of species A−1, Z to A, Z is
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=
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where G is the nuclear partition function (2 for the neutron), Q1 is
the binding energy of A−1, Z, and Θ = (2πmakT/h2)3/2. Similarly,
we can write an expression for the ratio of species A−2, Z−1 in
terms of A−1, Z
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where Q2 is the binding energy of this new species. If you multiply
these two equations, then you obtain a relation between A, Z, and
A−2, Z−1

N(A−2, Z−1)NnNp
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G(A, Z)
Θ2

(

A − 2

A

)3/2

exp

(

−
Q1 + Q2

kT

)

(26.2.4)



This progression can be taken all the way to Z = A = 1, with the
result

N(A, Z) =
G(A, Z)

2A
A3/2NZ

p NA−Z
n Θ1−A exp

(

−
Q

kT

)

(26.2.5)

where

Q = (ZmH + (A − Z)Mn − M(A, Z)) c2 (26.2.6)

is the binding energy of the nucleus A, Z. Note the resultant abun-
dances are a function only of the temperature, the binding energy of
the species, and the number density of protons and neutrons. Note
also that the latter two quantities are constrained. Since the density
of the star is known, we have from (5.1.1)

NAρ = Np + Nn +
∑

NiAi (26.2.7)

Moreover, if we parameterize the system with the quantity Z̄/N̄ ,
i.e., the average proton to neutron ratio, then

Z̄

N̄
=

∑

ZN(A, Z) + Np
∑

(A − Z)N(A, Z) + Nn
(26.2.8)

Thus (26.2.5), (26.2.7), and (26.2.8) form a set of three equations
with three unknowns, and ρ, T , and Z̄/N̄ described the entire set
of nuclear abundances.

Unfortunately, the analysis above is not completely accurate, since
it fails to account for reactions that involve the weak nuclear force,
i.e., beta decays. Since the neutrinos from these decays leave the
star, there is no inverse reaction associated with beta-decays, and
no equilibrium condition. To first order, however, the effect of beta-
decays can be modeled through their impact on Z̄/N̄ . Thus,
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(26.2.9)



The computation of beta-decay rates is a bit tricker than normal,
since many of the decays come from excited nuclear states, and
the high densities increase the probability of electron captures by a
factor of ∼ 100 over terrestrial conditions. However, these reactions
are important, in that a small change in Z̄/N̄ greatly affects the
composition of the iron group. Clearly, the faster the reactions
proceed, the less time there is for beta-decay, and the closer Z̄/N̄
will be to 1.

The question of beta-decays and the value of Z̄/N̄ has important
consequences for supernova calculations and for cosmic abundance
determinations. For example, consider silicon burning, where 28Si
is converted to iron peak elements. Let’s examine the case where
the two dominant resultant species are 54Fe and 56Ni. These nuclei
are in statistical equilibrium via the reactions

54Fe + 1H −→
←−

55Co + γ

55Co + 1H −→
←−

56Ni + γ

If 28Si burns to 56Ni, then the reaction is exothermic with an net
energy release of 10.9 MeV and the star can continue burning; on
the other hand, if the result is 54Fe + 2p, then −1.3 MeV is lost
in the reaction, and the star will collapse. From (26.2.4), the ratio
between 54Fe and 56Ni is

N(54Fe)

N(56Ni)
N2

p = 22 G(54Fe)

G(56Ni)

(

54
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)
3

2

Θ2 exp
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−
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kT
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The ratios of the partition functions for these two species is ∼ 1, so
plugging in the numbers yields

N(54Fe)

N(56Ni)
N2

p = T 3
9 1068.13−62.09/T9 (26.2.10)



We can now substitute for Np using (26.2.8); if Z̄/N̄ = 1

Z̄

N̄
= 1 ≈

26N(54Fe) + 28N(56Ni) + Np

28N(54Fe) + 28N(56Ni)
=⇒ Np ≈ 2N(54Fe)

Substituting this in (26.2.10) gives

N(54Fe)3

N(56Ni)
=

N2
AX(54Fe)3A(56Ni)

X(56Ni)A(54Fe)3
ρ2 = T 3

9 1067.53−62.09/T9

Thus, for X(54Fe) = X(56Ni), ρ2 ≈ T 3
9 1024.09−62.09/T9

The graph for Z̄/N̄ = 1 shows that at low temperatures, 28Si will
fuse to 56Ni (which then beta-decays to 56Fe); this reaction pro-
vides energy to supports the star. However, if 28Si burns at a high
temperature, 54Fe will result, and the star will collapse.

This process of nucleosynthesis is call the e-process, for equilibrium
process.



In general, the peak iron element will have approximately the same
proton to neutron ratio as given by Z̄/N̄ . Thus,

Z̄

N̄
≈

26

28
=⇒ 54Fe while

Z̄

N̄
≈

26

30
=⇒ 56Fe

In nature, the most abundant isotope in the iron group is 56Fe,
with 26 protons and 30 neutrons. This suggests that the e-process
usually either occurs very rapidly at low temperatures, so that 56Fe
is produced via the decay of 56Ni, or proceeds very slowly so that
beta-decays make Z̄/N̄ ≈ 0.87.



The binding energy per nucleon of the most stable nucleus of each
atomic weight. The solid circles represent nuclei with even numbers
of protons and an even number of neutrons, while the crosses show
odd-A nuclei.



The early phase of nuclear rearrangement of initially pure 28Si at
T = 5 × 109 K and ρ = 1.3 × 107 g cm−3. The abundances grow
very rapidly at first, as the liberated alpha particles are consumed
in the rapid flow towards the iron group.



Number densities of key nuclei during silicon burning at T = 5 ×

109 K at later times. The densities of free protons and neutrons
have become nearly quasistatic as a result of the near equilibrium
between their rate of capture and their photoejection into the nu-
clei heavier than 28Si. All the heavier nuclei have approached a
quasi-equilibrium with 28Si and the pool of free nucleons, so their
abundances also change very little.



Mass fractions of the most abundant nuclear species in nuclear sta-
tistical equilibrium at T = 4 × 109 K and ρ = 106 g cm−3. As the
value of Z/N is reduced, the equilibrium shifts to more neutron-rich
nuclei (Clifford & Taylor 1965, Mem. Roy. Astron. Soc., 69, 21.)



A schematic of the principal nuclei that result from the burning of
silicon. For T > 4 × 109 K, the burning is so fast that Z/N = 1
throughout the burning. The time required for the burning increases
greatly as the temperature is decreased; this results in lower values
for Z/N . Near T ∼ 3 × 109 K, the neutron-rich nucleus 54Fe has
sufficient time to appear; at even lower temperatures the beta decays
drive the equilibrium to 56Fe.


