
Methods of Energy Transport

There are 3 methods for energy transport within a star

• Radiative absorption and emission
• Convection
• Conduction (collisions in random thermal motion)

Heat Conduction is only important under degenerate conditions
(i.e., in white dwarfs and neutron stars). However, in normal
stars, both radiation and convection can be important.



Radiative Transport of Energy

Consider a system of particles diffusing across a boundary in the
z direction. Let

n = the particle density
v̄ = the mean velocity of the particles
l = the particle mean free path. For particles, l is defined as

the distance a particle will move before its cross-section
for collision, σ, encounters another particle, σl = 1/n

If we assume that the motions of the particles are isotropic, then
on average, ∼ 1/3 of the particles will have their motions primar-
ily in the z direction, and ∼ 1/2 of those will be moving toward
the boundary, as opposed to away from it. Thus, the flux of
particles diffusing across the boundary will be

F1 =
1

6
nz−l v̄z−l (3.1.1)

Similarly, the flux of particles diffusing across the boundary from
the other direction is

F2 =
1

6
nz+l v̄z+l (3.1.2)

If vz−l ≈ vz+l, then the net flux of particles will be

F1 − F2 =
1

6
v̄ [nz−l − nz+l]

If the mean free path is smaller than the density gradient, this is
simply

F = −
1

3
v̄ l

dn

dz
−→ F = −D∇n (3.1.3)

where the diffusion coefficient, D = 1
3
v̄ l. (This is Fick’s law.)



To compute the flux of radiative energy across a boundary, treat
the photons as particles, and recall that the energy density of
radiation, U , is

U = a T 4

Thus

F = −
1

3
v̄ lph

dU

dr
= −

1

3
c lph

(

4 a T 3 dT

dr

)

For photons, the mean free path between collisions is

lph =
1

κρ

where κ is the mean absorption coefficient (with units of area per
unit mass), so the diffusion equation can be written

F = −
4acT 3

3κρ

dT

dr
(3.1.4)

To put this in terms of an expression useful for stellar structure
calculations, first substitute L for F ,

L

4πr2
= −

4acT 3

3κρ

dT

dr

and then change the equation to the Lagrangian form

dT

dM
= −

3κL

64π2ac r4T 3
(3.1.5)

We can now put this in terms of the radiative temperature gra-
dient for a star in (at least approximate) hydrostatic equilibrium

∇rad =

(

d lnT

d lnP

)

rad

=
M

T

dT

dM

/

M

P

dP

dM



Substituting the Lagrangian equation for the radiative tempera-
ture gradient (3.1.5) and the pressure (2.2.4) we get

∇rad =
3κLP

16πacGMT 4
(3.1.6)

and the radiative plus conductive flux at any point in the star is

Frad =
4 a c GMT 4

3κ r2 P
∇rad (3.1.7)

Note that the diffusion approximation is only good when the
photon mean free path is short compared to the scale of the
density gradient. Near the surface, the approximation breaks
down.



Conductive Transport of Energy

Energy transport by conduction (i.e., from collisions between
electrons and atomic nuclei) works exactly the same as radiative
transport – through Fick’s equation. Thus,

F =
dq

dt
= −De

dT

dr

and the conductive term can simply be combined with the radi-
ation term. If we define “conductive opacity” as

κcd =
4acT 3

3Deρ
(3.1.8)

then

Fcd =
4acT 3

3κcdρ

dT

dr

and
1

κtot

=
1

κrad

+
1

κcd

(3.1.9)



Criteria for Convection

To decide whether convection occurs in a star, begin by consid-
ering a blob of material with volume V in pressure equilibrium
with its surroundings. Initially, both the blob and its surround-
ings have temperature T1 and density ρ1. Now suppose the blob’s
temperature is perturbed, such that its new temperature is T ′

1.
If T ′

1 > T1 and pressure balance is maintained, then the equation
of state of the gas demands that ρ′ < ρ. Given a local gravity, g,
the blob will feel a buoyance force per unit volume

ρ1g − ρ′1g

As a result, the blob will rise a distance ∆r, to a location in the
star with T2 and ρ2. As it does so, the blob will expand to a larger
volume (to maintain pressure equilibrium with its surroundings)
and its new density will be ρ′2. The buoyancy force on the blob
will now be

ρ2g − ρ′2g

If ρ′2 < ρ2, then the blob will continue to rise, and the star will
be dynamically unstable to convection; if ρ′2 > ρ2 then the blob
will sink back to its original position. In other words, convection
will not occur if

(

dρ

dr

)

i

>

(

dρ

dr

)

s

(3.2.1)

where the subscript i denotes how the internal density of the
blob has changed with radius, and the subscript s indicates the
gradient in the star.

To translate this condition for stability into a more tractable
form, begin by using the equation of state, ρ = ρ(P, T, µ). dρ is
then related to P , T , and µ by

dρ =

(

∂ρ

∂P

)

dP +

(

∂ρ

∂T

)

dT +

(

∂ρ

∂µ

)

dµ



so

dρ

ρ
=

P

ρ

(

∂ρ

∂P

)

dP

P
+

T

ρ

(

∂ρ

∂T

)

dT

T
+

µ

ρ

(

∂ρ

∂µ

)

dµ

µ

=

(

∂ ln ρ

∂ lnP

)

dP

P
+

(

∂ ln ρ

∂ lnT

)

dT

T
+

(

∂ ln ρ

∂ lnµ

)

dµ

µ

= α
dP

P
− δ

dT

T
+ ϕ

dµ

µ
(3.2.2)

where α is the isothermal compressibility, δ is the volume coef-
ficient of expansion, and ϕ is the chemical potential coefficient.
Thus, the condition for stability is then

(

α

P

dP

dr
−

δ

T

dT

dr
+

ϕ

µ

dµ

dr

)

i

>

(

α

P

dP

dr
−

δ

T

dT

dr
+

ϕ

µ

dµ

dr

)

s

Since, by definition, the blob must remain in pressure equilib-
rium with its surroundings, the first terms on either side of the
inequality cancel. Furthermore, since the blob does not change
its chemical composition while moving, (dµ/dr)i = 0. This leaves

(

δ

T

dT

dr

)

i

<

(

δ

T

dT

dr
−

ϕ

µ

dµ

dr

)

s

Now if we multiply both sides of the inequality by the pressure
scale height,

λP = −P

/

dP

dr
= −

dr

d lnP
(3.2.3)

the condition for stability becomes

(

δ
d lnT

d lnP

)

i

>

(

δ
d lnT

d lnP
− ϕ

d lnµ

d lnP

)

s



or
(

d lnT

d lnP

)

s

<

(

d lnT

d lnP

)

i

+
ϕ

δ

(

d lnµ

d lnP

)

s

(3.2.4)

Note that if the star is stable, the term on the left is ∇rad, the
star’s radiative temperature gradient. Moreover, the first term
on the right is nothing more than the adiabatic temperature gra-
dient. Thus, for a chemically homogeneous region of a star, the
condition for stability is simply

∇rad < ∇ad (3.2.5)

This is the Schwartzschild criterion for dynamical stability. If
the star is chemically inhomogeneous, then the Ledoux stability
criterion must be used:

∇rad < ∇ad +
ϕ

δ

(

d lnµ

d lnP

)

(3.2.6)

The Schwartzschild criterion can be translated into a statement
about entropy. In effect, the criterion is equivalent to saying that
the specific entropy of a star never decreases as you move outward
in radius. To see this, consider the thermodynamic relation

dq = Tds = cP T

[

dT

T
−∇ad

dP

P

]

(1.21)

If we take the derivative of both sides with respect to r, and
change to log quantities, then the radial gradient of entropy is
given by

ds

dr
= cP

{

d lnT

dr
−∇ad

d lnP

dr

}

(3.2.7)

So, if we take the pressure derivative out of the brackets, we get

ds

dr
= cP

{

d lnT

d lnP
−∇ad

}

d lnP

dr
(3.2.8)



or
ds

dr
= cP (∇−∇ad)

d lnP

dr
(3.2.9)

Obviously, for a star to be in hydrostatic equilibrium, the pres-
sure must decrease outward, so d lnP/dr is negative. Therefore,
if the star is dynamically stable, ∇ < ∇ad and the star’s entropy
derivative is positive. If the star is unstable to convection, then
∇ = ∇ad and the entropy will be constant over the region. (Ac-
tually, it is possible for ∇ to exceed ∇ad by a very small amount,
but we’ll get to this later.)



Convective Transport of Energy

In a radiative region of a star, the temperature gradient is given
by ∇rad. However, energy transport by radiation (and conduc-
tion) is not always efficient. In that case, convection transport of
energy will occur. By definition, if radiation and conduction are
not working, then energy is not being lost from the individual
convective cells, and the stellar temperature gradient ∇ = ∇ad.
If energy transport by radiation and convection are comparable
then ∇rad > ∇ > ∇ad.

In practice, when convection occurs in stellar cores, ∇ ∼ ∇ad.
Only in the outer parts of some stars do superadiabatic conditions
exist.


