
Boundary Conditions

To create a stellar model, one must solve four interrelated differ-
ential equations, which describe how the radius, pressure, lumi-
nosity, and temperature change with mass. To do this, we need
four boundary conditions (to start off each differential). The
boundary conditions for mass and luminosity are obvious:

r(m = 0) = 0 (4.1.1)

L(m = 0) = 0 (4.1.2)

Unfortunately, we do not have any constraints for the central
temperature and pressure. For these variables, we must apply
boundary conditions at the surface of the star. To first order,
we will define the stellar “surface” as the place where the optical
depth, τ = 1. At this location, m = MT , and we can apply the
boundary conditions

P (m = MT ) = 0 (4.1.3)

T (m = MT ) = 0 (4.1.4)

This approximation isn’t too bad, considering the temperatures
and pressures in the interior of the star. A slightly better ap-
proximation is to use the equation

LT = 4πR2σT 4
eff (4.1.5)

(which actually defines effective temperature) and realize that
the light we see must come from some finite optical depth

τ =

∫ ∞

R

κ ρ dr = κ̄

∫ ∞

R

ρ dr



and note that

P (R) =

∫ ∞

R

gρdr = g0

∫ ∞

R

ρdr

Setting these two equations equal yields

P (R) = g0τ/κ̄ =
GMT

R2

τ

κ̄
(4.1.6)

where, again, τ ∼ 1. (Actually, it’s 2/3.)

An even better approximation can be obtained using relations
between surface temperature, pressure, luminosity, and radius
that come from the calculations of stellar atmospheres. Grids
of model stellar atmospheres exist that give values for P and T
at their base, as a function for log g and L. By interpolating in
these grids, boundary conditions for P and T can be provided.



Forward and Back Differencing Techniques

There are two ways to numerically solve a system of differential
equations. The first method is through “forward differencing,”
or “explicit” numerical integration. With this technique, values
for integrating step n + 1 are estimated directly from the known
values of the previous step. In the alternative “back differenc-
ing” or “implicit” integration method, the values at step n + 1
are estimated using the n + 1 values themselves, via numerical
inversion.

For example, consider the simple differential equation

dX

dt
= a − bX

which has the analytical solution

X =
a

b
+ e−bt

In the forward differencing method, this equation is

Xn+1 − Xn

∆t
= a − bXn

which translates to

Xn+1 = a∆t + Xn (1 − b∆t) (4.2.1)

while in the back differencing method, the equation is

Xn+1 − Xn

∆t
= a − bXn+1

or

Xn+1 =
a∆t + Xn

1 + b∆t
(4.2.2)



Now note that (4.2.1) and (4.2.2) behave very differently as the
time step becomes large, i.e., ∆t → ∞. With forward differ-
encing, the numerical solution diverges; with back differencing,
Xn+1 → a/b, which is the analytical result. This is characteristic
of the two approaches. In general, forward differencing solutions
are unstable, and can only be used with very small time steps
(i.e., for the above example, b∆t < 1). Back differencing methods
are much more reliable, and should be used whenever possible.



Expansions for the Center

A quick inspection of the equations of stellar structure demon-
strates that they cannot be evaluated at M = 0, due to powers
of r and M in the denominator. For these locations, you need to
use an expansion of each equation. For the continuity equation
(2.1.3), this means

dr =
1

4πr2ρ
dM =⇒ r2dr =

1

4πρ
dM

If we assume that very close to the center, ρ ≈ ρ0, and we apply
the boundary condition r = 0 at M = 0, then

∫ r

0

r2dr =

∫ M

0

1

4πρ
dM =⇒

r3

3
=

M

4πρ0

or

r =

(

3M

4πρ0

)1/3

(4.3.1)

Similarly, if the gradient in the energy sources is small, (2.3.3)
expands to

dL = (εn − εν + εg) dM =⇒ L = (ε0n − ε0ν + ε0g)M (4.3.2)

with its boundary condition.

For the momentum equation (2.2.9), we can assume that the
center of the star is in mechanical equilibrium, so

dP = −
GM

4πr4
dM = −

GM

4π

(

4πρ0

3M

)4/3

dM



where we have substituted for radius using (4.3.1). Integrating
this yields

P − P 0 = −
G

4π

(

4πρ0

3

)

4

3
∫ M

0

M−
1

3 dM

or

P − P 0 = −
3G

8π

(

4πρ0

3

)4/3

M2/3 (4.3.3)

In the case of radiative energy transport, we can expand the
temperature equation (3.1.5) to

dT = −
3κLdM

64π2acr4T 3
= −

3κ0(ε0n − ε0ν + ε0g)M

64π2acT 3

(

4πρ0

3M

)4/3

dM

where we have again substituted using (4.3.1) and (4.3.2). Keep-
ing everything but the mass constant, we then get

∫ T

T 0

T 3dT = −
κ0(ε0n − ε0ν + ε0g)

16πac

(

4π

3

)
1

3
{

ρ0
}

4

3

∫ M

0

M−
1

3 dM

yielding

T 4−{T 0}4 = −
κ0(ε0n − ε0ν + ε0g)

2ac

(

3

4π

)2/3

{ρ0}4/3M2/3 (4.3.4)



Finally, for convective energy transport, we re-write (2.4.4) as

dT = −
T

P

GM

4πr4
∇addM = −

T

P 0

GM

4π

(

4πρ0

3M

)4/3

∇0
ad

which implies

∫ T

T 0

dT

T
= −

G∇0
ad(4π)1/3

34/3P 0
{ρ0}4/3

∫ M

0

M−1/3dM

and

lnT − lnT 0 = −
(π

6

)1/3 G∇0
ad

P 0
{ρ0}4/3M2/3 (4.3.5)



Solving the Equations

The equations of stellar structure are not analytic; they must be
solved numerically. Furthermore, because the boundary condi-
tions for the equations aren’t all at the center, the differentials
can’t just be integrated outward.

The method of choice for solving the equations of stellar struc-
ture is called Henyey method, after Henyey, Forbes, & Gould
1964, Ap. J., 139, 306. (Other names for it include the relax-
ation method, the difference method, the shell method, and the
generalized Newton-Raphson method.) Before you can use this
method, however, you first need to

1) divide the star up into K mass shells, with 10 < K < 1000.
The distribution of these shells is somewhat of an art form: in en-
ergy generating zones, where the temperature and density must
be known with high accuracy, and near the surface, where the
gradients are steep, the mass fraction must be small, ∼ 10−4MT .
Zones as large as 0.1MT may be used elsewhere. In general,
static stars need fewer shells than rapidly evolving stars.

2) obtain a starting model that is somewhat close to the final
solution. (For instance, the previous model in an evolutionary
series will usually do.) If this initial guess is too far off, the model
will not converge.

To create a stellar model, we start by re-writing all the spa-
tial differentials as finite differences, and putting (2.1.3), (2.2.9),
(2.3.3), and (2.4.4) in the form of

dy

dx
− f(x, y, z) = 0



In other words, the equations of stellar structure become

rj+1 − rj

Mj+1 −Mj
−

1

4πr2ρ
= Aj,1 (4.4.1)

P j+1 − P j

Mj+1 −Mj
+

GM

4πr4
+

(

1

4πr2

) (

d2r

dt2

)

= Aj,2 (4.4.2)

Lj+1 − Lj

Mj+1 −Mj
− εn + εν + cP

dT

dt
−

δ

ρ

dP

dt
= Aj,3 (4.4.3)

T j+1 − T j

Mj+1 −Mj
+

T

P

GM

4πr4
∇ = Aj,4 (4.4.4)

where the superscript j refers to the number of the shell, and
Ai,j = 0. Note that all the variables to the left of the equal
signs are function of M, t, r, P , L, and T , and they should be
evaluated half-way between shell j and j + 1. Thus (4.4.1) is

rj+1 − rj

Mj+1 −Mj
−

1

2

{

1

4π{rj+1}2ρj+1
+

1

4π{rj}2ρj

}

= Aj,1

(4.4.5)
Note also that the variables ρ, cP , δ, and ∇ad are known through
the equation of state, εn, εν , and κ are functions of ρ, T , and
atomic physics, and the time derivatives can be written in terms
of known values from the previous model, i.e.,

dP j

dt
=

P j − P j
0

∆t
(4.4.6)

dT j

dt
=

T j − T j
0

∆t
(4.4.7)



(If the second derivative term is needed, it is written via the
velocity, which adds another variable and equation to the mix.
The time steps for mechanical calculations, however, must be
short, so that no shell has ∆r/∆t exceeding the sound speed.)

Next, we have the four special equations for the center of the
star.

r1 −

(

3M1

4πρ0

)1/3

= A1,1 (4.4.8)

P 1 − P 0 +
3G

8π

(

4πρ0

3

)4/3

{M1}2/3 = A1,2 (4.4.9)

L1 − (ε0n − ε0ν + ε0g)M
1 = A1,4 (4.4.10)

{T 1}4 − {T 0}4 +
κ0(ε0n − ε0ν + ε0g)

2ac

(

3

4π

)
2

3

{ρ0}
4

3 {M1}
2

3 = A1,3

(4.4.11)
or

lnT 1 − lnT 0 +
(π

6

)1/3

+
G∇0

ad

P 0
{ρ0}4/3{M1}2/3 = A1,4(4.4.12)

where again, the values Ai,j = 0. Note that in deriving (4.4.8)
and (4.4.9) we have applied two boundary conditions, r(0) =
L(0) = 0.

Finally, we have the two outer boundary conditions:

PK = BP (4.4.13)

TK = BT (4.4.14)



where BP and BT are either zero, or obtained from LK and rK

using a look-up table of stellar atmospheres. (Recall, however,
that normally the interior integration isn’t carried out all the way
to the surface; instead a match point is chosen interior to the
region where partial ionization, super-adiabaticity, and changing
opacities become important.)

Using the above equations, and the initial guess of the results, we
can proceed with calculating a stellar model. Suppose our initial
guess of the stellar model is wrong. In that case, the values Ai,j

in equations (4.4.1) through (4.4.4) and (4.4.8) through (4.4.13)
will not be zero. We will therefore need to change our values of
r, P , L, and T by δr, δP , δL, and δT . By how much? If we are
not too far off, then linear theory should hold, and, for example

(

∂Aj,1

∂rj

)

δrj +

(

∂Aj,1

∂P j

)

δP j +

(

∂Aj,1

∂Lj

)

δLj+

(

∂Aj,1

∂T j

)

δT j +

(

∂Aj,1

∂rj+1

)

δrj+1 +

(

∂Aj,1

∂P j+1

)

δP j+1+

(

∂Aj,1

∂Lj+1

)

δLj+1 +

(

∂Aj,1

∂T j+1

)

δT j+1 = −Aj,1 (4.4.15)

There are 4 equations like this for each mass shell. Except for
shell 1, each equation contains 8 partial derivatives. (The inner-
most contains only six partials, since the values of r and L at the
center are known; see (4.4.8) through (4.4.12)). In addition, we
have the two equations (with four partials each) that come from
the outer boundary condition. Now note: each partial derivative
can be computed directly using the values of the initial guess, and
the values of Ai,j are already known. Thus, the only unknowns
in (4.4.15) are the values of δr, δP , δL, and δT .



We can write the series of (4.4.15)-type equations in matrix form.
Suppose we have a (minimal) three shell model. The relations
between the partial derivatives and Ai,j , BP , and BT is
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or, in matrix notation
HU = A (4.4.16)

where H is called the Henyey matrix. The unknown vector con-
taining the correction values is then

U = H−1A (4.4.17)

In fact, since the Henyey matrix is rather sparse (with many ze-
ros, except along the diagonal), it’s fairly easy to find efficient
algorithms to compute its inverse. Once U is known, these cor-
rection values can be used to improve the original guess, and the
procedure can be repeated. After several iterations, the values
Ai,j , BP , and BT may approach zero, giving you the structure
of the star.



NUMERICAL TRICKS

Because of the large range of numbers involved, and the possi-
bility of numerical roundoff in computers, there are a number of
useful tricks that are sometimes used (and/or needed) in model
calculations.

• Instead of using mass as the independent variable, define a
new variable ξ, such that M = M(ξ) and 0 < ξ < 1. This
changes the equations of stellar structure slightly, i.e., mass con-
servations becomes

dr

dξ
=

1

4πr2ρ

dM

dξ

but makes the program more flexible, in that by changing M(ξ),
you can immediately adjust to different mass distributions within
a star. (For example, the distribution of mass within a main
sequence star is completely different from that of a giant star.)
By changing to ξ, the calculations are made more linear.

• In computing derivatives by finite differences, some round
off error may occur, especially if the variables are changing by
many orders of magnitude. To minimize these errors, variables
should be made as linear as possible. For pressure and density,
this means changing variables again, i.e., substituting

p = P 1/4 q = ρ1/2 F = L/ξ2

Again, these substitutions change the character, but not the sub-
stance of the equations.

• In equation (4.4.5) we used the arithmetic average of either
side of the shell to define its average. However, if the quantity
being measured is increasing exponentially, an arithmetic average
may not be appropriate: a geometrical average may be better.
Unfortunately, there is no one prescription for this problem, other



than to use variables that are as linear as possible and to keep
the shells thin.

• When computing the perturbations δr, δP , δL, and δT , it
is often times useful to “sneak up” on a solution, and limit your
maximum correction to some small value. For example, if the
equations predict that δr should be increased by 5%, it may be
better to correct the value by only ∼ 1%. This will ensure that
the perturbations stay in the linear regime. Without such a limit,
the non-linearities in the equations may cause you to overcorrect,
and continually bounce back and forth over the true solution.



THE MATCHING POINT METHOD

Another (older) method of creating a numerical stellar model is
the Matching Point, or Fitting method. In this method, one
starts with the two center boundary conditions (r = L = 0), but
guesses the central temperature and pressure. The star is then
integrated outward. At the same time an inward integration is
performed, starting with the known surface boundary conditions
(Ps and Ts) and guesses about R and LT . One then attempts to
match the integrations somewhere in the middle of the star.

In general, of course, the two integrations won’t match up: the
guesses for the surface radius and luminosity and the central
temperature and pressure will be wrong. At the matching point,
the equations for the inward and outward integrations will differ
by an amount Y . However, suppose the initial model is not too
far off.

Let xi be the initial guesses for R, LT , Tc, and Pc. (The index
i, of course, goes from 1 to 4.) Perturb one of the initial guesses,
such that x′

i = xi + δxi. Although the model still won’t agree at
the matching point, you can compare the old values of Yi with
the new values Y ′

i . In other words, you obtain an estimate for
∂Yi

∂xi

for each equation. Now compute similar partial derivatives
for the other variables. You can now estimate the perturbations
you need to match the inward and outward integrations, i.e., to
make Yi = 0. This is done via 4 independent linear equations of
the form

(

∂Y1

∂x1

)

δx1 +

(

∂Y1

∂x2

)

δx2 +

(

∂Y1

∂x3

)

δx3 +

(

∂Y1

∂x4

)

δx4 = −Y1

By solving the equations for the perturbations, δxi, you can es-
timate the magnitude of the true perturbations needed to match
things up. After a few iterations, the model should converge.



Note that this technique is good for computing zero age main
sequence models, but is not nearly as efficient for evolving stars
as the Henyey method.


