
Mean Molecular Weight

The thermodynamic relations between P , ρ, and T , as well as the
calculation of stellar opacity requires knowledge of the system’s
mean molecular weight (defined as the mass per unit mole of
material, or, alternatively, the mean mass of a particle in Atomic
Mass Units). Recall that a mole of any substance contains NA =
6.02252×1023 atoms. Thus, the number density of ions is related
to the mass density, ρ, by
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ρ
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µ
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where ma is the mass that is equivalent to 1 A.M.U. If the mass
fraction of species i is xi, then its number density is
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where Ai is the atomic weight of the species. The number density
of all ions in a volume of gas is then
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To compute the contribution of (massless) electrons to the mean
molecular weight, let Zi be the atomic number of species i, and fi

be the species’ ionization fraction, i.e., the fraction of electrons
of i that are free. The number density of electrons is therefore
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Note that in the case of total ionization (fi = 1), this equation
simplifies greatly. Since Zi/Ai = 1 for hydrogen, and ∼ 1/2 for
everything else,
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From the definitions above, the total number density of particles
is

n = nI + ne =
ρNA

µ

where the mean molecular weight is defined as
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The Ionization Fraction

The calculation of mean molecular weight requires knowledge
of the chemical composition of the material and the ionization
fraction. To calculate ionization fraction, one needs the Saha
equation.

In general, the Saha equation can be used to compute ionization
fractions over most of the star. It does, however, require that
the gas be in thermodynamic equilibrium. This is true through-
out the star, as at high densities, collisions will control the level
populations. This approximation only breaks down in the solar
corona, where the densities become very low.

The Saha equation also breaks down in the centers of stars, where
high densities cause the ionization energies of atoms to be re-
duced. (Obviously, if the mean distance between atoms is d, then
there can be no bound states with radii greater than ∼ d/2.) In
the case of the hydrogen atom, the Bohr radius of level n is

an = (n + 1)2
h̄2

mee2
= 5.28 × 10−9(n + 1)2 cm

Thus, if the particle density is

ρ ∼
µma

4/3π(2a0)3
∼ 0.3 µ g cm−3

then all the hydrogen is necessarily pressure ionized. In practice,
the Saha equation begins to break down at nuclear distances of
∼ 10 a0, which corresponds to ∼ 2.7×10−3 µ g-cm−3. To correct
for this effect, the Saha equation is normally used until it begins
to show decreasing ionization fractions toward the center of the
star. When this happens, complete ionization is assumed.



To derive the Saha equation, begin by considering the Boltzmann
equation, which states that the number of atoms in level i relative
to level j is

ni

nj
=

ωi

ωj
e−χij/k T (5.2.1)

where ωi is the statistical weight of the level i (i.e., the number
of separate, individual states that are degenerate in energy), and
χij is the difference in energy between the two levels. The number
of atoms in level i relative to the number in all levels is thus
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where χi is the energy difference between the ith level and the
ground state. The variable u is the partition function for the
atom (or ion). Because u is a function of temperature, it is
sometimes written u(T ).

Now let’s generalize this equation to electrons in the continuum.
Let ni be the number of atoms in all levels (defined as n above),
and let state i+1 be that where an excited electron is in the con-
tinuum with momentum between p and p + dp. The Boltzmann
equation then gives
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)

where χi is the energy needed to ionize the ground state of the
atom, and dωi+1 is the statistical weight of the ionized state.



Now consider that dωi has two components: one from the ion
(ωi+1), and other from the free electron (dωe). The former is
just the statistical weight of the ground state of the ion, while
the latter can be computed using the exclusion rule. Since each
quantum cell in phase space can have only two electrons in it
(spin up and spin down), then the number of degenerate states
in a volume h3 is
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Thus
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The number of electrons in volume
∫

dV = 1/ne, so the total
number of electrons in all continuum states is therefore
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or, if we let x2 = p2/2mekT , then
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Finally, note that for the calculation above ni+1 represents those
atoms of species ni that have one electron in the continuum state,
i.e., ionized. It does not consider atoms of ni+1 that are them-
selves excited. (In other words, ni+1 in (5.2.4) only includes
ionized atoms in their ground state.) To include all the excited
states of ni+1, we must again sum the contributions in exactly
the same way as we did in (5.2.2). Thus, the statistical weight
in (5.2.4) should be replaced by the partition function, and
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This is the Saha equation, which relates the number of atoms in
ionization state i + 1 to the number in ionization state i. Note
that if need be, we can substitute the electron pressure for the
electron density using Pe = nekT , and write the Saha equation
as
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The sense of these equations is intuitive: the higher the tem-
perature, the greater the ratio, but the higher the density (or
pressure), the lower the ratio due to the greater possibility for
recombinations).


