
The Stellar Opacity

The mean absorption coefficient, κ, is not a constant; it is de-
pendent on frequency, and is therefore frequently written as κν .
Inside a star, several different sources of opacity are important,
and each has its own frequency dependence. To compute the ap-
propriate “average” opacity, κ̄ recall that Fick’s law states that
the flux at any point is related to the energy density U by
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and that, when integrated over all energies,

F = −4acT 3

3κ̄ρ

dT

dr
(3.1.4)

But how is κ̄ related to κν? To answer this question, we start by
explicitly writing in the frequency dependence of U , i.e.,
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and compute the monochromatic flux distribution
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The total flux, integrated over all frequencies is then
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Comparing (6.1.1) and (3.1.4), we see that
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or, since
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The average opacity that you should use is therefore that which
is harmonically weighted over the temperature derivative of the
Planck curve. This is called the Rosseland mean opacity.

Note that the function weights the high frequencies more than
the low frequencies. To see this, we can take the temperature
derivative of the Planck function
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where x = hν/kT , and find its peak by taking the derivative.
Then
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Mathematically, this works out to x ≈ 3.83. In other words, the
high energy photons count much more than low energy photons.



Although in real models, the Rosseland mean opacity is com-
puted numerically, it is instructive to evaluate the form of κ̄
when κν ∝ ν−n. From the definition of the Rosseland mean
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Thus, if the opacity law is κ ∝ ν−n, the temperature dependence
of the Rosseland mean opacity will be κ̄ ∝ T−n. This follows
since the mean opacity must drop as the number of high energy
photons increases.



ELECTRON SCATTERING

When free electrons have thermal motions that are much less
than their rest mass energy, i.e., mec

2 À kT , or T ¿ 5.9 ×
109 K, the cross-section for scattering of photons off electrons is
frequency independent. The opacity per unit mass of material in
this case is
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where σe is the Thomson cross-section of the electron
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and ne is the density of electrons
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If the gas is fully ionized, i.e., if the ionization fractions fi ≈ 1 (as
it will be in stellar interiors), and if we approximate the atomic
weight (Ai) of a metal as twice its atomic number (Zi), then
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where X, Y , and Z are the mass fractions of hydrogen, helium,
and metals, respectively. Since X + Y + Z = 1,
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and

κe = NAσe(1 + X)/2 = 0.2 (1 + X) cm2 g−1 (6.1.7)

Note again that as long as the ionization is complete (and matter
is not degenerate), the result is independent of temperature and
density.



FREE-FREE ABSORPTION

The energy emitted per unit volume by a single electron scattered
by ions of charge Z (as a function of velocity, v) is
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where e is the charge of the electron, and gff is the gaunt factor.
To get the emissivity of thermal bremsstrahlung as a function of
frequency, we integrate this over a Maxwellian distribution, noting
that to get a photon with frequency ν, the incident electron must
have mev

2/2 ≥ hν. Thus, vmin = (2hν/me)
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Next, to go from emission to absorption, we can use the fact that
in thermodynamic equilibrium, Kirchoff’s law must hold, hence
the source function is Sν = jν/aν = Bν(T ), where aν , is the
absorption coefficient per electron (with units of inverse distance).
Thus
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or, upon substituting ρ = neµe/NA and ρ = nIµI/NA
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The first term in the equation gives the total absorption coefficient;
the exponential term at the end represents a negative contribution
from stimulated emission.

If we combine the constants, letting
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To calculate the Rosseland mean free-free opacity, the inverse of
this expression, weighted by the derivative of the Planck Function,
must be integrated over all frequencies. This is tedious, but note
that if we neglect the effects of stimulated emission, the frequency
dependence of the opacity is ν−3, which, through (6.1.5), implies
a temperature dependence of T−3. This, plus the T−1/2 depen-
dence which is already in the equation, gives a total temperature
dependence of T−7/2. Numerically,
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Opacities of the form κ ∝ ρ T−7/2 are called Kramers opacities.



BOUND-FREE ABSORPTION

For a hydrogenic atom, the cross section for absorption from state
(n, l) to the continuum is
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where the energy of the incident photon must be great enough to
ionize the atom, i.e.,

hν > χn =
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From this, it is clear that the opacity law for a single species of
atom will have a number of absorption “edges” below which the
absorption cross section will drop quickly. The total bound-free
opacity, of course, will be the sum over all elements, Z, all ioniza-
tion states, i, and and all excitation states, n. In the hydrogenic
ion approximation, the opacity is

κν =
∑

Z

∑

n

σbf(Z, n, l)

(

Ni,n

Ni

)

Z

(

Ni
∑

Ni

)

Z

ρNA

AZ
(6.1.13)

This summation, along with the process of taking the Rosseland
mean, will act to smear out many of the edges.

The bound-free opacity must be computed numerically, but we can
get a rough idea of how bound-free opacity behaves by making the
assumption that in a star’s interior, all ions will be very highly
ionized and thus will have at most one electron. The Saha equation
states that the number of atoms in ionization state i is related to
the number in ionization state i + 1 by
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where u(T ) are the partition functions and χi is the ionization
energy. If the gas is highly ionized, Ni+i ≈ 1, ui+1 = 1, and
ui = 2, and
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We can then estimate the number of these atoms in excitation
state n from the Boltzmann equation. For hydrogenic ions, the
statistical weight of a level is n2, so if we let χi,n = χi + χn, then
the total number of absorbing ions is
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where we have dumped the many constants into the variable C
(and have ignored the stimulated emission term).

Now examine the factor χi,n/kT . If for a particular n and Z,
χi,n ¿ kT , then that term will contribute little to the opacity,
since the species will have too few bound electrons. Similarly, if
χi,n À kT , there will not be many photons of the requisite energy
to be absorbed, and the contribution to the opacity will again be
small. Thus, only those terms with χi,n ∼ kT will contribute.
This leaves κ ∝ ρ T−1/2ν−3, which is the same as free-free opac-
ity. Bound-free absorption will therefore also follow the Kramers
opacity law.

A rough numerical estimate for the Rosseland mean for bound-free
opacity is

κ̄bf ∼ 1025 Z(1 + X) ρ T−7/2 cm2 g−1 (6.1.15)

Note that this is a factor of ∼ 100 greater than the Rosseland
mean for free-free opacity.



BOUND-BOUND ABSORPTION

At extremely high temperatures, T > 106 K, the radiation field will
consist mostly of ionizing photons, hence bound-bound absorption
will be minimal (< 10%). However, at cooler temperatures the
onset of bound-bound transitions in the UV and far UV can double
the stellar opacity.

Obviously, the computation of bound-bound opacity must be done
numerically, since it involves the summation of millions of individ-
ual absorption lines. It should be noted, however, that in the
interior of a star, the pressure (and thermal) broadening terms
will be substantial, so the net result will be continuum absorp-
tion, rather than a series of absorption lines. Also, the expression
for the absorption coefficient of hydrogenic bound-free transitions
(6.1.12) is the same as that for bound-bound transitions. Thus, we
can expect the same ∼ ν−3 dependence and therefore a Kramer-
like opacity law. The strength of the total absorption, however,
will be critically dependent on temperature.



H− OPACITY

A free electron passing by a neutral hydrogen atom can produce
a dipole moment in the atom. At that time, an extra electron can
attach itself to the system; the result is an H− ion. This ion is
fragile – it has an ionization energy of only 0.754 eV, and a large
cross section for absorption, either through bound-free absorption

H− + hν ⇀↽ H + e−(v)

or free-free absorption

H− + e−(v) + hν ⇀↽ H− + e−(v)

In the envelopes of cool stars, H− can be the dominant source of
opacity.

The contribution of H− to the star’s opacity will depend on the
number of H− ions, which can be calculated from the Saha equa-
tion.
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where uH− = 1, uH0
= 2, and χ = 0.754 eV. If x is the fraction

of ionized hydrogen (x ∼ 0 for cool stars), and aν is the frequency
dependency of H− absorption, then the opacity due to H− is

κH− =
aνnH−

ρ
= nH (1 − x)

(

nH−

nH0

) (

aν

ρ

)

= aνXNA (1 − x)
ne

4

(

h2

2πmekT

)

3

2

eχ/kT

= aνXNA
(1 − x)

4

Pe

µekT

(

h2

2πmekT

)

3

2

eχ/kT(6.1.16)



Note that the total opacity is directly proportional to the electron
density. In extremely metal poor stars, the free electrons must
come from ionized hydrogen, hence the opacity will rise with tem-
perature, until the number of neutrals starts to decline. However,
for normal metal rich stars, common, low ionization metals (such
as Ca, Na, K, and Al) contribute to the supply of free electrons,
thereby lessening this dependence. Consequently, H− opacity is
much stronger in metal rich stars than in metal poor stars, and is
stronger in dwarfs than in giants (due to the pressure term).

The determination of the frequency dependent cross-section of the
H− ion involves the quantum mechanical computation of overlap-
ping wave functions. It is not a power law: it increases linearly at
short wavelengths until ∼ 8500 Å, then declines until the ioniza-
tion threshold at ∼ 16, 500 Å. After that, that opacity increases
again due to free-free opacity. As a result, the Rosseland mean of
H− opacity is not a Kramers law opacity. Very roughly

κ̄H− ∼ 2.5 × 10−31(Z/0.02) ρ1/2 T 9 cm2 g−1 (6.1.17)



The combined bound-free and free-free opacity from the H− ion
at T = 6300 K. The y-axis plots the cross-section (×10−26 per
neutral H atom per unit electron pressure, Pe = nekT ). From
Mihalas, Stellar Atmospheres (2nd edition), pg. 103.



This figure illustrates the importance of the various opacities, as
a function of temperature and density, for a normal (Population
I) mix of abundances. The lines are labeled in units of electron
scattering opacity, κ0 = κe = 0.2(1 + X). From Hayashi, Höshi,
& Sugimoto 1962, Suppl. Prog. Theo. Phys. Japan, Vol. 22.



The Los Alamos National Labs radiative opacities for X = 0.7,
Y = 0.28, and Z = 0.02. The dashed line shows the half-ionization
curve for pure hydrogen.



The Rosseland mean opacity (in cm2 g−1) as a function of density
(in g cm−3) and temperature for X = 0.739, Y = 0.24, and Z =
0.24. The range of values plotted is applicable for the outer regions
of stars; the dots represent values in the solar model.



The Eddington Luminosity

If energy transport at the surface of a star is through radiation,
then equation (3.1.4) holds, and the star’s luminosity is related to
its temperature gradient by
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Now assume that the dominate source of pressure is from radiation.
(At the surface of a bright star, this will certainly be true.) For
radiation pressure,
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Now if the star is in hydrostatic equilibrium,

dP

dr
= −GMT

R2
ρ (2.2.2)
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This is the Eddington luminosity. If the luminosity of the star is
greater than this, the surface cannot be stable, and will be ejected
from the star via radiation pressure.

Note that equation (6.2.6), coupled with the mass-luminosity re-
lation on the main sequence, implies that there is an upper limit
to the mass of main sequence stars. If, for main sequence stars,
LT ∝ M3.5 and electron scattering is the dominant source of opac-
ity at the surface, then
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This equation implies that the maximum mass of a main-sequence
star is Mmax ∼ 60M¯. Stars more massive than this must have
strong stellar winds and will lose mass rapidly.


