
Basic Assumptions About Convection

The calculation of convection requires the we adopt some assump-
tions about the process. In general, these assumptions are false
(sometimes by several orders of magnitude), but we are stuck with
them.

• There exist discrete “blobs” of material inside a star that have
sizes of the order of lm, where lm is the mixing length. These
blobs can move distances of the order of lm before losing their
identity. (This variable lm is somewhat of a fudge-factor, and many
of the uncertainties will get hidden in it.)

• The mixing length is small, compared to other scale lengths in
the star. In particular, if λP is the pressure scale height, then
lm ¿ λP .

• The blob maintains pressure balance with its surroundings. thus
the time for a pressure wave to cross the blob is much shorter than
the timescale for blob motion, lm/vs ¿ lm/v.

• Acoustic waves, shocks, magnetic fields, rotation, are all negligi-
ble.

• The temperatures and densities inside a blob are only slightly
different than those surrounding it.

These assumptions are sometimes called “Boussinesq”; they are
valid for almost incompressible fluids with small density and tem-
perature variations.



Convective Energy Transport

In a radiative region of a star, the temperature gradient is given by
∇rad; in the limiting case of a fully convective region (i.e., where
all the energy is transported by convection), the gradient will be
∇ad. In the outer envelopes of stars, however, the temperature
gradient can be ∇rad > ∇ > ∇ad.

The computation of ∇ in the presence of convection requires some
work. Recall that the flux transported by radiative (and conduc-
tive) diffusion is

Frad = −4acT 3

3κρ

dT

dr
(3.1.4)

When combined with the hydrostatic equilibrium equation (2.2.2)
and the definition of ∇ (2.4.1), this becomes

Frad =
4ac GMT 4

3κPr2
∇ (8.1.1)

This gives a relation between Frad and ∇. Unfortunately, neither
is known, since Frad carries only part of the star’s flux. The other
part is carried through blobs of matter, which move with velocity
v and have density ρ. If these blobs are in pressure equilibrium
with their surroundings, then they will be capable of depositing

Fcnv ∼ ρ v cP ∆T (8.1.2)

where ∆T is the temperature difference between the blob and the
surrounding material. Since ∇rad is defined as the value needed to
transport all of the star’s flux, we have

Ftot = Frad + Fcnv =
L

4πr2
=

4ac GMT 4

3κPr2
∇rad (8.1.3)

The task is therefore to estimate ρ, v, and ∆T for the blobs.



First, let’s find an expression for ∆T in terms of the temperature
gradient ∇. To do this, consider the behavior of a single blob of
material. Assume that a typical blob will move a radial distance
lm before losing its identity, and that, at a given location r inside
the star, a typical blob will have already moved half this distance.
At this time, the temperature difference between this typical blob
and its surroundings will be

Ti − Ts =

(

dTi

dr
− dTs

dr

)

lm
2

where the subscripts i and s refer to the material inside and outside
the blob. (We will now drop the subscript s, since those are just
the global variables of the star.) If we divide each side by T and
multiply by the pressure scale height, λP = −dr/d lnP , then
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d
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or
Ti − T

T
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∆T

T
= (∇−∇i)

lm
2λP

(8.1.4)

Note that at this point, the variables ∇ and ∇i are still unknown.

Now let’s estimate the velocity of the blob. According to the defi-
nition of α, δ, and ϕ,

dρ

ρ
= α

dP

P
− δ

dT

T
+ ϕ

dµ

µ
(3.2.2)

However, if the blob remains in pressure equilibrium with its sur-
roundings, dP = 0, and if the chemical composition does not
change, dµ = 0. Hence

dρ

ρ
= −δ

dT

T



which implies
ρi − ρ

ρ
= −δ (∇−∇i)

lm
2λP

(8.1.5)

This difference in density leads to a net buoyancy force of fb =
−g (ρi − ρ); the work performed by this force while moving the
blob is then

fb ·
lm
2

= −g (ρi − ρ)
lm
2

= g ρ δ (∇−∇i)
l2m

4λP

Now suppose that ∼ 1/2 this work goes into the kinetic energy of
the blob while the other half operates on the surroundings. The
mean velocity of the material passing the blob is then given by

1

2
ρ v2 =

1

2
g ρ δ (∇−∇i)

l2m
4λP

or

v =
lm
2

{

GMδ (∇−∇i)

r2λP

}1/2

(8.1.6)

With this expression, we can write the convective flux as a function
of the temperature gradients that are internal and external to the
blob:

Fcnv = ρ v cP ∆T = ρ

{

GM δ (∇−∇i) l2m
4λP r2

}
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(8.1.7)

Finally, let’s estimate ∇i for a blob with volume V , surface area
S, and total heat content (over its surroundings) Q. Clearly, if the
blob remains in pressure equilibrium, then

Q = ρ V cP ∆T (8.1.8)



As the blob moves, some of this heat will be radiated away. From
(3.1.4), the rate at which this will happen will be

dQ

dt
= −4 a c T 3

3 κ ρ

dT

dx
S (8.1.9)

where x is the direction normal to the surface of the blob. To
evaluate this, let’s make the simpliest approximation that the tem-
perature gradient normal to the blob depends on the size of the
blob, i.e.,

dT

dx
∼ Ti − T

lm

Through (8.1.4), this implies
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S (8.1.10)

Now, as the blob moves, its internal temperature will change, both
from the radiative loss of heat, and from adiabatic expansion (or
contraction). The change in temperature is

(

dT

dr

)

i

=

(

dT

dr

)

ad

+

(

dT

dr

)

=

(

dT

dr

)

ad

− 1

ρ V cP

(

dQ

dr

)

=

(

dT

dr

)

ad

− 1

ρ V cP

dt

dr

(

dQ

dt

)

=

(

dT

dr

)

ad

− 1

ρ V cP v

(

2 a c T 4

3 κ ρ

(∇−∇i)

λP
S

)



(

dT

dr

)

i

=

(

dT

dr

)

ad

− 2 a c T 4 (∇−∇i)

3 κ ρ2 cP v λP

(

S

V

)

(8.1.11)

Now let’s choose some shape for the blob. The ratio of surface
area to volume for a sphere of diameter lm is S/V = 6/lm, but
other shapes will have different values. For the moment, let’s just
assign S/V = ζ/lm. If we now substitute this in, and multiply by
λP /T = −(dr/d lnP )/T , we get
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or, if we let ζ = 9 for compatibility with the literature

∇i −∇ad

∇−∇i
=

6 a c T 3

κ ρ2 cP v lm
(8.1.12)

This last equation provides us the information we need to solve the
problem. Aside from the local variables (P , T , ρ, etc.), we have
five new variables associated with the convection problem: Frad,
Fcnv, v, ∇i, and ∇. However, we also have five equations: (8.1.1),
(8.1.3), (8.1.6), (8.1.7), and (8.1.12). Thus, all the variables can
be computed (although it takes a bit of math). The mixing length
lm is a free parameter, and must be chosen reasonably to match
observations as best as possible.



Solving the Convection Equations

The five convection equations are

Frad =
4ac GMT 4

3κPr2
∇ (8.1.1)

Frad + Fcnv =
4ac GMT 4

3κPr2
∇rad (8.1.3)

v = lm
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GMδ (∇−∇i)

4r2λP

}1/2

(8.1.6)

Fcnv = ρ cP T
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)1/2
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(8.1.7)

∇i −∇ad

∇−∇i
=

6 a c T 3

κ ρ2 cP v lm
(8.1.12)

To solve these equations, we first consolidate the constants and
location condition variables into two dimensionless quantities.

U =
3acT 3

cP ρ2κl2m

(

4λP r2

GMδ

)1/2

(8.1.13)

and
W = ∇rad −∇ad (8.1.14)

All the quantities in these variables are known from the stellar
structure, and can be taken as constants.



We can then proceed to eliminate the variables. If we substitute
the expression for velocity (8.1.6) in (8.1.12), then

∇i −∇ad

∇−∇i
=
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6 a c T 3

κ ρ2 cP lm

)(

4 λP r2

GM δ l2m

)1/2

=
2U

(∇−∇i)
1/2

or
∇i −∇ad = 2U (∇−∇i)

1/2
(8.1.15)

Next, we can use (8.1.1) and (8.1.3) to eliminate Frad

Fcnv =
4ac GMT 4

3κPr2
(∇rad −∇)
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)

leaving

Fcnv =
4acT 4

3κρλP
(∇rad −∇) (8.1.16)

and use this with (8.1.7) to eliminate Fcnv
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Finally, we can combine (8.1.15) and (8.1.17) by noting that if we
re-write (8.1.15) as

(∇−∇ad) − (∇−∇i) − 2U (∇−∇i)
1/2

= 0

then the equation is actually a quadratic in (∇−∇i)
1/2, with the

(positive) solution

(∇−∇i)
1/2

= −U +
(

U2 + ∇−∇ad

)1/2
(8.1.18)

if we assign
ξ = U2 + ∇−∇ad

then (8.1.18) is simply

(∇−∇i)
1/2

= ξ − U (8.1.19)

Now if we substitute this into (8.1.17), then

(ξ − U)
3

=
8

9
U (∇rad −∇)

or, since ∇ = ξ2 −∇ad − U2 and W = ∇rad −∇ad ,

(ξ − U)
3 − 8

9
U

(

ξ2 − U2 − W
)

= 0 (8.1.20)

This is straightforward cubic equation in ξ, that should have only
one real root. Since U and ∇ad are both known quantities the
solution of this equation gives ∇, which in turn, can be used to
calculation Frad and Fcnv.



When is Convection Important?

The quantity U is a measure of how efficient convection is at
transporting energy. The convective cells have two characteris-
tic timescales: one giving the length of time required to move the
distance lm and deliver its energy, and the other describing how
long it takes for the cell to lose its heat via radiation. The former
timescale can be estimated from the free-fall equation

τff ∼
(

2lm
g

)1/2

=

(

2lmr2

GM

)1/2

The latter can be derived using our estimates of the total heat
content (8.1.8) and rate of heat loss (8.1.9) of each blob.
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)
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(
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U (8.1.21)

Thus, to order unity, U gives the efficiency of energy transport.
If U −→ 0, then the timescale for heat transport is much less
than that for heat loss, and ∇ should equal ∇ad. This can be



seen via (8.1.13) and (8.1.15), since for small U , ∇i ≈ ∇ad, and
thus ∇ ≈ ∇ad. This occurs in dense regions (i.e., in convective
cores). In the outer envelopes of stars, however, the convective
blobs can radiate a significant amount of their heat while they are
in transit. In this case, U −→ ∞, so through (8.1.15), ∇ −→ ∇i,
and therefore through (8.1.17), ∇ −→ ∇rad. The full mixing length
theory is usually only needed in the outer parts of cool stars, where
superadiabatic conditions can exist i.e., where both radiative and
convective flux transportation are important. Most of the time,
one or the other dominates, so you can use ∇rad or ∇ad, whichever
is appropriate.

The results you get for convective energy transport depend on the
mixing length. In the literature, mixing length is not quoted; in-
stead the value usually given is

α =
lm
λP

(8.1.22)

Traditionally, α ∼ 1; currently, the “best fit” seems to be α ∼ 1.7.
(Note that this violates one of the tenants of mixing length theory.)



Convection theory is only an approximation. Convection similar
to that occuring in stars, cannot be studied in the laboratory. If
we define the ratio of radiative and thermal diffusion as

νT =
4 a c T 3

3 κ ρ

/

ρ cP =
4 a c T 3

3 κ ρ2cP

and let ν represent the viscosity of the gas, then the Rayleigh
number

Ra =
δ g l4m
νT ν

(∇−∇ad)

is a dimensionless quantity that represents how well convection
is proceeding. For laboratory fluids, Ra ∼ 1011, but in stars,
Ra ∼ 1021. Thus, our experiments are 10 orders of magnitude
away from reality. (In fact, the closest driven convection on earth
is convection heating in the air above deserts.)



Semi-Convection

A phenomenon that takes place in the cores of massive stars is semi-
convection. Consider a star with a convective core within which
nuclear reactions are proceeding, and a radiative envelope. In the
convective core, ∇rad > ∇ad; outside the core, ∇rad < ∇ad, and,
at the border between the two regions, ∇rad = ∇ad. As always,
∇rad is given by

∇rad =
3κLP

16πacGMT 4
(3.1.6)

Now assume that the major source of opacity is electron scattering,
and that the matter is fully ionized. (Since we are talking about
the core of a massive star, these are excellent assumptions.) As
nuclear reactions proceed in the core, the hydrogen content of the
region will decrease. Since the electron scattering opacity for fully
ionized matter is given by

κe = 0.2(1 + X) (6.1.7)

this results in a decrease in the stellar opacity.

Now let’s examine the behavior of ∇rad at a distance ε from the
convective core. By definition, for convection to occur

∇rad,i > ∇ad inside the core

and
∇rad,o < ∇ad outside the core

Therefore, since ∇ad shouldn’t change much over a distance ε,

∇rad,i > ∇rad,o by definition of convection

However, ∇rad is directly proportional to the hydrogen content,
and Xi < Xo. Thus,

∇rad,i < ∇rad,o from the opacity

Thus there is a fundamental contradiction.



Another way to look at the problem is to consider the temperature
and density difference between a convective blob and its surround-
ings. Recall that for a region to be dynamically stable,

(

dρ

dr

)

i

>

(

dρ

dr

)

s

(3.2.1)

or
∆ρ

∆r
> 0

where ∆ represents the difference between the region internal to
the blob and the blob’s surroundings. For positive displacements
of ∆r, the blob will be denser than its surroundings, and will sink
back to its original position.

Now consider the temperature difference between the blob and the
surrounding.

∆T =

[(

dT

dr

)

i

−
(

dT

dr

)

s

]

∆r

If the blob is in pressure equilibrium (given) and the stellar region
is chemically homogeneous, then from (3.2.2)

∆T

T
= −∆ρ

δρ

The negative sign indicates that the inside of the blob will be cooler
than its surroundings. It will therefore gain some energy by radi-
ation, which will result in the blob having a slightly lower density,
and a slightly weaker restoring force due to buoyancy. Any motion
of the blob will eventually be damped out.

Next, consider the situation where the surrounding medium is
chemically inhomogeneous. We again assume that the region is
dynamically stable, with ∆ρ/∆r > 0. However, in this case

∆T

T
= −∆ρ

δρ
+

ϕ

δ

∆µ

µ
(8.2.1)



Consequently, if

∆µ =

(

dµ

dr

)

i

−
(

dµ

dr

)

s

>
∆ρ

ρ

µ

ϕ

then blobs that have a positive ∆r displacement will have ∆T >
0. These blobs will be hotter than their surroundings and will
therefore lose heat as they move. When this happens, their density
will increase, the restoring force will increase, and their oscillation
will slowly increase in amplitude. The blob will be vibrationally
unstable; the result will be a slow mixing, which will eventually
destroy the chemical gradient. This semi-convection will occur
when

∇ad < ∇ < ∇ad +
ϕ

δ

(

d lnµ

d lnP

)

(8.2.2)

Note that from (8.2.1) and (8.2.2), it will only occur when the mean
molecular weight is decreasing rapidly with radius, or equivalently,

(

d lnµ

d lnP

)

> 0

This occurs in high mass stars with convective cores. In these ob-
jects, the convective region gets smaller with time, leaving behind
a chemical gradient.


