
Boundary Conditions

The first order approximation for the surface boundary condi-
tions on pressure and temperature are

P (m = MT ) = 0 (4.1.3)

T (m = MT ) = 0 (4.1.4)

Compared to the values for temperature and pressure within the
star, small values such as P = T = 0 for the surface conditions
are valid. However, we can improve upon these boundary condi-
tions by using relations between surface temperature, pressure,
luminosity, and radius that come from the analysis of stellar at-
mospheres.

To estimate the pressure and temperature in the atmosphere of
a star with luminosity, LT , radius, R, and mass MT , recall that
for radiative diffusion
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4πr2
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c

3κνρ
∇uν (9.1)

where u is the energy density, and we have explicity labeled the
frequency dependence of u and κ, and L. Since the energy density
is related to the radiation pressure by
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3
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3
(7.1.3)

(9.1) is equivalent to
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To simplify this equation, we first get rid of the frequency depen-
dence by finding a mean value for the opacity. If we write (9.2)
without the ν dependence,
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then it is clear from a comparison of the two equations that
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Note that this is not a Rosseland mean opacity (but often a
Rosseland mean is used).

If we now substitute dτ = κ̄ ρ dr in (9.3), the equation becomes

dPrad

dτ
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4πr2c
(9.5)

Compared with the stellar radius, the atmosphere is very thin,
with r ≈ R. Thus we can trivially integrate (9.5) from the stellar
“surface” (τ = 0) to a given optical depth, τp, by

Prad(τ = τp) − Prad(τ = 0) =

∫ τp
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Note here that Prad(τ = 0) will not be u/3, since that implies an
isotropic radiation field. (Recall, that in deriving the diffusion
equation, we assumed that there were just as many particles dif-
fusing inward across a boundary, as there were particles diffusing
outward.) If we make the simple assumption that photons only
diffuse outward at the stellar surface, then Prad(τ = 0) will be 1/2
the isotropic value, i.e., Prad(τ = 0) = u/6. In thermodynamic
equilibrium, uν = 4πB(T )/c, which means
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If we now define the effective temperature of an object through
the equation LT = 4πR2σT 4

eff , then πB(T ) = σT 4
eff , and
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This approximates how the radiation pressure of a star changes
with optical depth. Similarly, if we relate the radiation pressure
to the temperature by Prad = aT 4/3 (and remember that a =
4σ/c), then
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(9.8)

Note that (9.8) defines what the optical depth is at the location
of the photosphere, i.e., at T = Teff , τp = 2/3.

Since we now know where the stellar photosphere is in terms of
τp, we can use this to compute the pressure at the photosphere.
In hydrostatic equilibrium,

dP = −
GMT

R2
ρ dr = −

GMT

κ̄R2
dτ (9.9)

If we integrate this equation from the surface (τ = 0) to the
photosphere (τ = 2/3), and make the (somewhat poor) assump-
tion that the opacity doesn’t change with optical depth, then the
photospheric pressure, Pp, is

Pp =
2GMT

3κ̄R2
+ P (τ = 0) (9.10)

Now let’s assume that at τ = 0 the gas pressure is negligible
compared to the radiation pressure. With this assumption, we
again have
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which yields
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(9.11)

The second term in (9.11) is the ratio of the stellar luminosity
to the Eddington luminosity. Under most circumstances, LT ¿

4πc GMT /κ̄, so the latter term can be neglected. This leaves

Pp =
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GMT

κ̄R2
(9.12)



Matching Radiative Atmospheres to Interiors

Although the stellar photosphere boundary conditions represent
an improvement over the surface boundary conditions, they still
are not ideal. At the photosphere, the mean free path of a pho-
ton is long compared to the pressure, density, and temperature
gradients. This violates the assumptions that went into deriving
the equations of radiative energy transport. To avoid this prob-
lem, this atmospheric grid should be used to match the interior
models below the photosphere.

To see how this can work, let’s adopt an opacity law of the form

κ = κ0ρ
pT q = κ′

0P
αT β (9.13)

where (for an ideal gas)

α = p; β = q − p; κ′

0 = κ0

(µ ma
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)α

If the envelope is radiative, i.e.,
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then
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which implies
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This expression explains why one can use surface boundary con-
ditions (P = 0, T = 0) in a stellar model. If β < 4, and α > −1,
(as is true for most opacities), then as one goes deeper into the
interior of the star,

T 4−β
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1 + α
C1 P 1+α (9.16)

making P and T independent of the surface conditions. More-
over, a comparison of (9.14) and (9.16) yields
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(9.17)

which allows us to relate the temperature to the star’s radius.
Recall that
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If we assume that the amount of mass contained in surface layers
is negligible, and use the ideal gas law, then
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We can thus determine boundary conditions deeper in the star,
and reach a region where the stellar interior approximations hold.



Convective Atmospheres

For cool stars, H− opacity dominates the surface layers. Since,
β ∼ 9 for this type of opacity, the analysis above does not apply.
To see what happens, consider the behavior of temperature and
pressure in a small radiative region on the surface of the star. At
the surface, the radiative temperature gradient is
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or, if we again assume κ = κ′

0 PαT β ,

∇p =
3κ0LT

16πacGMT

Pα+1
p

T 4−β
p

= C1 Pα+1
p T β−4

p (9.20)

Now, re-write (9.15) as
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divide through by T 4−β , and substitute in ∇rad and ∇p for P
and Pp
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The expression for ∇rad at some depth in the star is then
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This can be further simplified if we evaluate ∇p at the stellar
photosphere. If we substitute

Tp = Teff ; LT = 4πR2σT 4
eff ; Pp =
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(the latter from (9.12)), and remember that a = 4σ/c, then
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Thus, at T = Teff , τp = 2/3, and ∇p = 1/8.

Now, consider a cool star, in which H− opacity in important. At
low temperatures, κ ∝ ρ1/2T 9, and thus α = 1/2 and β = 17/2.
Equation (9.22) for ∇rad then gives
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The equation demonstrates that ∇rad will increase rapidly as the
temperature increases towards the interior of the star. In fact,
just below the surface, ∇rad will become greater than ∇ad, Thus,
the region just below the surface will be convectively unstable.
This is a feature of all cool stars: if H− is the dominant source of
opacity, convection will occur. If we assume that convection will
begin when ∇rad > 0.4, then the temperature at this transition
zone will be
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In a similar fashion, we can estimate the pressure at the transition
zone. If we take (9.21) and substitute for the constant C1 using
(9.20), then
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From (9.23) and (9.24), ∇p = 1/8 and T/Tp = (8/5)2/9, so this
equation can be directly solved for P . When we plug in the
numbers for the α = 1/2, β = 17/2 case of H− opacity, then the
pressure at the transition zone becomes

(
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= 2 =⇒ Pt = 22/3Pp (9.26)


