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ABSTRACT

We analyze the filamentarity in the Las Campanas redshift survey (LCRS) and determine the length scale
at which filaments are statistically significant. The largest length scale at which filaments are statistically sig-
nificant, real objects is between 70 and 80 4~! Mpc for the LCRS —3° slice. Filamentary features longer than
80 ~~! Mpc, although identified, are not statistically significant; they arise from chance alignments. For the five
other LCRS slices, filaments of lengths 5070 A~! Mpc are statistically significant, but not beyond. These results
indicate that while individual filaments up to 80 #~! Mpc are statistically significant, the impression of structure
on larger scales is a visual effect. On scales larger than 80 #~! Mpc, the filaments interconnect by statistical
chance to form the filament-void network. The reality of the 80 A~ Mpc features in the —3° slice makes them
the longest coherent features in the LCRS. While filaments are a natural outcome of gravitational instability, any
numerical model that attempts to describe the formation of large-scale structure in the universe must produce
coherent structures on scales that match these observations.

Subject headings: cosmology: theory — galaxies: statistics — large-scale structure of universe —

methods: numerical
On-line material: color figures

1. INTRODUCTION

One of the most striking visual features in the distribution
of galaxies in the Las Campanas redshift Survey (LCRS;
Shectman et al. 1996) is that they appear to be distributed
along filaments. These filaments are interconnected and form
a network, with voids largely devoid of galaxies comprising
the region between the filaments. This network of intercon-
nected filaments encircling voids extends across the entire
survey and may be referred to as the “‘cosmic web.” Similar
networks of filaments and voids are also visible in other gal-
axy surveys, e.g., CfA (Geller & Huchra 1989), 2dFGRS
(Colless et al. 2001, 2003), and Sloan Digital Sky Survey Early
Data Release (SDSS EDR) (Stoughton et al. 2002; Abazajian
et al. 2003). These, if they are a genuine feature of the galaxy
distribution, represent the largest structural elements in the
hierarchy of structures observed in the universe, namely, gal-
axies, clusters, superclusters, filaments, and the cosmic web.

The analysis of filamentary patterns in the galaxy distribu-
tion has a long history dating back to papers by Zel’dovich,
Einasto, & Shandarin (1982), Shandarin & Zel’dovich (1983),
Barrow & Bhavsar (1987), Zel’dovich (1970), and Einasto
et al. (1984). In the last paper, the authors analyze the distri-
bution of galaxies in the Local supercluster. They use the
friends-of-friends (FOF) algorithm with varying neighborhood
radii to identify connected systems of galaxies referred to as
“clusters.” As they increase the neighborhood radius, they
find that the clusters that are initially spherical become mul-
tibranched with multiple filaments of lengths up to several
tens of 4~! Mpc extending out in different directions. Finally,
as the radius is increased further, they find that the filaments
become interconnected and join neighboring superclusters
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into an infinite network of superclusters and voids. A later
study (Shandarin & Yess 1998) used percolation analysis to
arrive at a similar conclusion for the distribution of the LCRS
galaxies. The large-scale and super—large-scale structures in
the distribution of the LCRS galaxies have also been studied
by Doroshkevich et al. (1996, 2001), who find evidence for a
network of sheetlike structures that surround underdense
regions (voids) and are criss-crossed by filaments. The dis-
tribution of voids in the LCRS has been studied by Miiller
et al. (2000), and the topology of the LCRS has been studied
by Trac et al. (2002) and Colley (1997). A recent analysis
(Einasto et al. 2003a) also indicates a supercluster-void net-
work in the SDSS.

Traditionally, correlation functions (Peebles 1993) have
been used to quantify the statistical properties of the galaxy
distribution. For the LCRS, the two-point correlation function

is a power law,
S\ 152
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with the correlation length 7o = 6.28 h~! Mpc on scales of
2.0-16.4 h~! Mpc. On scales larger than 30-40 A~' Mpc,
&(r) fluctuates closely around zero, indicating a statistically
homogeneous galaxy distribution at and beyond these scales
(Tucker et al. 1997). This raises the question of whether the
filamentary features that appear to span scales larger than
100 2~! Mpc are statistically significant features of the gal-
axy distribution, or whether they are mere artifacts arising
from chance alignment of the galaxies.

A quantitative estimator of filamentary structure, Shape-
finder, was defined (Bharadwaj et al. 2000) to provide a

(1)
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Fic. 1.—Top lefi: Distribution of galaxies in a uniformly sampled region of the —3° slice. The filamentary patterns of galaxies are evident. Going clockwise, the
other three panels show some of the largest clusters identified using FOF after N = 3, 4, and § iterations of coarse graining. Most of the clusters shown are highly
filamentary (F, > 0.8), with F, > 0.9 for the largest cluster in each panel (the definition of F is given in the text). At each level of coarse graining, clusters grow
until we have a single, large filamentary network spanning the whole region, referred to as the “cosmic web.” [See the electronic edition of the Journal for a color

version of this figure.]

measure of the average filamentarity for a point distribution
in two dimensions. (See Sahni, Sathyaprakash, & Shandarin
1998 for general introduction to Shapefinders and Sheth et al.
2003 for the application of Shapefinders to three-dimensional
simulations of structure formation.) The Shapefinder statistic
was used to demonstrate that the galaxy distribution in the
LCRS exhibits a high degree of filamentarity compared to a
random Poisson distribution having the same geometry and
selection effects as the survey. This analysis provides objec-
tive confirmation of the visual impression that the galaxies
are distributed along filaments. This, however, does not es-
tablish the statistical significance of the filaments. The features
identified as filaments are essentially chains of galaxies, a
crucial requirement being that the spacing between any two
successive galaxies along a chain is significantly smaller than
the mean intergalaxy separation. A chain runs as long as it is
possible to find another nearby galaxy that is not yet a member
of the chain and breaks when no such galaxy is to be found.
The fact that the LCRS galaxies are highly clustered on small
scales increases the probability of finding pairs of galaxies at
small separations. This enhances the occurrence of long chains
of galaxies, and we expect to find a higher degree of fila-
mentarity arising just from chance alignments in the LCRS
compared to a Poisson distribution. To establish whether the
observed filaments are statistically significant or whether they
are a result of chance alignments of smaller structural ele-
ments, it is necessary to compare the sample of galaxies (here,
the LCRS slices) with a distribution of points that has the
same small-scale clustering properties as the original sample
and for which we know that all large-scale filamentary fea-
tures are solely due to chance alignments. This is achieved
using a statistical technique called “Shuffle” (Bhavsar & Ling
1988), whereby the statistical significance of the filamentarity
in a clustered data set can be assessed.

Shuffle generates fake data sets, practically identical in
their clustering properties to the original data up to a length
scale L but in which all structures longer than L, both real
and chance, of the original data, have been eliminated. In these
Shuffled data, filaments spanning length scales larger than L
are visually evident, even expected to be identified as a signal
by the statistics used to quantify the filamentarity, but all fila-
ments spanning length scales larger than L have formed acci-
dentally. The measure of the occurrence of filaments spanning
length scales larger than L in the Shuffled data gives us a
statistical estimate of the level at which chance filaments
spanning length scales larger than L occur in the original data.
Here we use Shuffle to estimate the degree of filamentarity
expected from chance alignments in the LCRS and use this to
determine the statistical significance of the observed fila-
mentarity. We present the method of analysis and our findings
in § 2. In § 3 we discuss our results and present conclusions.

2. ANALYSIS AND RESULTS

The LCRS contains the angular positions and redshifts of
26,418 galaxies distributed in six wedges, each 1°5 thick in
declination and 80° in right ascension. Three wedges are
centered around mean declinations —3°, —6°, and —12° in the
northern galactic cap and three at declinations —39°, —42°,
and —45° in the southern galactic cap. The survey has a
magnitude limit m = 17.75 and extends to a distance of
600 h~! Mpc. The most prominent visual feature in these
wedges (Fig. 1) is that the galaxies appear to be distrib-
uted along filaments, several of which span length scales of
100 A~! Mpc or more.

We extracted luminosity and volume-limited subsamples
(Fig. 1) from the LCRS data so that we have an uniform
sampling of the regions that we analyze. In order to sample the
largest regions that we could, with the above criterion in mind,
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we limited the wedges from 195 to 375 A~! Mpc in the radial
direction as shown in Figure 1.

Our data consist of a total of 5073 galaxies distributed in six
wedges. Each LCRS wedge is collapsed along its thickness (in
declination) resulting in a two-dimensional truncated conical
slice, which, being geometrically flat, can be unrolled onto a
plane. Each slice is embedded in a 1 x1 42~! Mpc rectangular
grid. Grid cells with galaxies in them are assigned the value 1,
and empty cells 0. Connected regions of filled cells are iden-
tified as clusters using an FOF algorithm. The geometry and
topology of each cluster is described by its area S, perimeter
P, and genus G. It is possible to utilize these measures to as-
sess the filamentarity of the supercluster of interest. This is
achievable using a set of measures termed as Shapefinders,
originally defined for two-dimensional hypersurfaces embed-
ded in three dimensions. We use a two-dimensional version of
the Shapefinder in our analysis of the superclusters in the
LCRS slices. However, before presenting our results, we di-
gress briefly and summarize the definition and the concep-
tual foundation of the Shapefinder measures.

The geometry of a given structure is sensitive to any de-
formation that the structure undergoes, while the topology of
the structure, solely relating to the connectedness of the
structure, remains unaffected. The morphology and the size of
the objects is a result of the interplay between these aspects.
The Shapefinders are statistics devised to utilize both geo-
metric and topological information of a given object to make
a meaningful statement about its size and morphology. Both
the geometry and topology of an object are characterized in
terms of Minkowski Functionals (hereafter MFs). In three
dimensions, the geometric MFs are (1) the Volume V, (2) the
surface area S, and (3) the integrated mean curvature C,
whereas the fourth MF is a topological invariant, the genus G.
Sahni et al. (1998) defined three Shapefinders as the ratios
of the above MFs, so as to have the dimensions of length.
These are conventionally considered to be reminiscent of the
characteristic thickness 7 = 3V/S, breadth B =S/C, and
length £ = C/4m(G + 1) of the object, and thus together with
genus G, give us a feel for the typical size and topology of the
object of interest. The information content about the three
characteristic length scales associated with the object can
further be used to make an objective statement about the
morphology of the object, as to how spherical, planar, ribbon-
like, or filamentary an object is. Sahni et al. (1998) proposed
to achieve this by using two dimensionless Shapefinders,
namely, planarity P and Filamentarity F, defined

B-T _ L-B
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These are defined so that for an ideal sheetlike object,
P =1, F = 0, whereas for an ideal one-dimensional filament,
P=0,F=1"

! The efficacy of the Shapefinder measures in revealing the morphology
of the superclusters has been amply demonstrated (Sheth et al. 2003).
These authors demonstrate that the percolating supercluster of the ACDM
universe is the most filamentary, also consistent with its visual impression.
Furthermore, the more massive superclusters were shown to be more fila-
mentary, and the smaller structures were found to be quasi-spherical with
P~ F~ 0. These results prove the robustness of Shapefinders and confirm
that the Shapefinders do indeed provide crucial insight into the morphology
of the Large Scale Structure (LSS), thus fulfilling the purpose for which
these were devised.

2 One of the first morphological survey of the real universe was done by
Sathyaprakash et al. (1998), who analyzed the 1.2 Jy Redshift Survey Catalog.
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In our present analysis, we use the two-dimensional version
of the Shapefinders, the Shapefinder measure F

::(Pz——168)

B (3)
originally defined in Bharadwaj et al. (2000), to quantify the
shape of the superclusters in the quasi—two-dimensional slices
of the LCRS. By definition 0 < F < 1, which quantifies the
degree of filamentarity of a cluster, with F = 1 indicating a
filament and F = 0 indicating a square (while dealing with a
density field defined on a grid). The average filamentarity (F;)
is defined as the mean filamentarity of all the clusters
weighted by the square of the area of the clusters,
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In the current analysis, we use the average filamentarity
to quantify the degree of filamentarity in each of the LCRS
slices.

The galaxy distribution in the LCRS slices is quite sparse,
and therefore the filling factor FF (defined as the fraction of
filled cells) is very small (FF ~ 0.01). The clusters identified
using FOF contain at most two or three filled cells, not yet
corresponding to the long filaments visually apparent in
the slices. Larger structures are identified by the method of
“coarse graining.” Coarse graining is implemented by suc-
cessively filling cells that are immediate neighbors of already
filled cells. It may be noted that the “coarse graining” pro-
cedure adopted by us is equivalent to smoothing successively
with a top-hat kernel. The filled cells get fatter after every
iteration of coarse graining. This causes clusters to grow, first
because of the growth of filled cells, and then by the merger of
adjacent clusters as they overlap. The observed large-scale
patterns are initially enhanced as the clusters grow and then
washed away as the clusters become very thick and fill up the
entire region. The FF increases from FF ~ 0.01 to 1 as the
coarse graining proceeds. So as not to limit ourselves to an
arbitrarily chosen value of FF as the one defining filaments,
we present our results showing the average filamentarity for
the entire range of filling factor FF.

Now we describe how the Shuffle algorithm works (Fig. 2).
A grid with squares of side L is superposed on the original
data slice. Square blocks of data that lie entirely within the slice
are then randomly interchanged, with rotation, repeatedly, to
form a new Shuffled slice. This process eliminates features in
the original data on scales longer than L, keeping clustering at
scales below L nearly identical to the original data. All the
structures spanning length scales greater than L that exist in
the Shuffled slices are the result of chance alignments. For
each value of L we use different realizations of the Shuffied
slices to estimate the degree of filamentarity that arises from
chance alignments on scales larger than L. The Shuffled slices
were analyzed in exactly the same way as the actual LCRS
slices. At a fixed value of L, the average filamentarity in the
original sample will be larger than in the Shuffled data only if
the actual data have more filaments spanning length scales
larger than L than that expected from chance alignments. We
vary the value of L from 10 to 100 ~2~! Mpc and determine
the largest value of L (Lmax) such that for all L < Ly the
values of the average filamentarity, F,, in the actual data
are higher than the Shuffled data, indicating the presence of

Fa (4)
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Fic. 2.—Top left: Same as in Fig. 1. Top right: Poisson distribution of points generated over the same region. Bottom: Shuffled realizations of the data with L =
70 and 80 ~~! Mpc. The square patches show the boundaries of the Shuffled regions. While it is evident that the Poisson data are much less filamentarity than the
LCRS galaxies, it is not possible to visually distinguish the level of filamentarity in the actual data from the Shuffled realizations. A quantitative analysis shows that
the L = 70 #~! Mpc Shuffled data exhibit less filamentarity than the actual data, while the L = 80 #~' Mpc Shuffled data are statistically identical to the original data
in filamentarity (Fig. 3). Note that all visual features across the boundaries in the two bottom panels (Shuffled data) are chance filaments.

physical filaments of lengths greater than L. We use three
realizations for L = 10, 20, 30, 90, and 100 2~' Mpc shuf-
fling of slices and six realizations for the intermediate length
scales. For length scales beyond L., the average fila-
mentarity in the Shuffled slices should continue to be the
same as in the actual LCRS slice, establishing L,,x as the
largest length scale across which we have statistically signifi-
cant filamentarity. Filaments that extend across length scales
larger than L,y are not statistically significant and are a con-
sequence of chance alignments. In Figure 3, we plot average
filamentarity, F»,, as a function of the filling factor, FF, for
both the original sample as well as for samples generated by
shuffling the patches for various values of L. To convey the
essential aspects of the analysis, we only show the results for
the slices Shuffled at our lowest L value, L = 10 2~ Mpc and
at or near the length scale of interest, L,x. We use the X7 test
to establish L.y for the six individual slices. The reduced x?
for the curves in Figure 3 are defined by

. . 2
Np Fg),LCRS _ f(t),Shuﬂied(L)

1
2 2
xX(L) = > .
Ng— 145 o2 (L)

)

where Np is the number of data points available for comparison
between the original slice and a Shuffled slice for a value of L.
The quantity % (L) is the standard deviation in F, measured
at a given filling factor, FF;, using all the available Shuffled
realizations at a given length scale L. We have noted that for
filling factor, FF > 0.7, all the F, curves follow the same
trend, regardless of the slice (original or Shuffied). This can be
interpreted as the regime of FF in which the coarse graining
defines structures of such large extent that they are unphysical,
and Shuffling does not discriminate between original or
Shuffled data. Including the tiny differences in the curves in
this regime (FF > 0.7) will give weight to an unphysical signal

and determine an erroneous 2. Hence, we only include the
region of the curves for FF < 0.7 to determine the reduced x?,
using this as the discriminating measure between the curve for
the real data and the Shuffled realizations at different L. The
reduced x? quantifies how different a Shuffled slice is from the
original, at various L. The minimum value of the reduced x?
should correspond to the length scale L = L, at which, if
slices are Shuffled, the filamentarity of the Shuffled slices and
the original slice differ the least. This gives us the length scale
Lmax beyond which filaments are only chance objects and not
physical.

In Figure 4, we show the reduced x? versus L plotted for
the six slices. We also list the minimum values of reduced x>
for each slice and the corresponding L. We see that the values
of reduced x? are well within acceptable bounds to say that
the Shuffled slices at these values of L are indistinguishable
from the original slice. The length scale that corresponds to
these minima is ~60 2! Mpc for all the southern slices,
whereas itis ~70 h~! Mpc for a —6° slice and 80 4! Mpc for
—3° and —12° slices. We thus establish that for the southern
slices the longest real filaments are no longer than 60 2~ Mpc
and for the northern slices are no longer than 80 4~! Mpc.
Beyond 80 4L, Mpc structure is not statistically significant.

3. DISCUSSION AND CONCLUSIONS

A look at the filamentary features at different levels of
coarse graining (Fig. 1) reveals that the size of the largest
filamentary feature increases monotonically with successive
iterations of coarse graining until it spans the entire survey
(Bharadwaj et al. 2000). As coarse graining proceeds, in-
dividual filaments form and then interconnect to form the
supercluster-void network, in keeping with the earlier analysis
(Einasto et al. 1984, 2003a; Shandarin & Yess 1998) discussed
in § 1. Although the length of the interconnected network of
filaments increases monotonically, the ratio of the length to
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Fic. 3.—Plots of average filamentarity, 7, vs. filling factor, FF, for each of the LCRS slices (dark black line), three Shuftled realizations of each slice at various L
(hatched regions and light shaded region) and three Poisson point distributions (dark shaded region): We show Shuffle results for L = 10 #~' Mpc, the smallest
patches that were Shuffled, and the two L values where a transition occurs from the Shuffled galaxy distribution being less filamentary than the original data to its
being indistinguishable from the original data. For each slice, this establishes Ly, the length beyond which filaments are just chance artifacts, somewhere between
these two values of L. [See the electronic edition of the Journal for a color version of this figure.]

the number of holes (genus) stabilizes and then decreases
(Bharadwaj et al. 2000). For the —3° slice, this ratio stabilizes
around 140 4! Mpc at FF ~ 0.4. This ratio can be interpreted
as the perimeter of the typical void in the network. This leads
to a picture in which there are voids of diameter 60 A~! Mpc
encircled by filaments of thickness 10 #~! Mpc (Peebles 1993;
Sheth et al. 2003; Sheth 2003) interconnected to form a large
web. A void of this size, along with the filament at its perim-
eter, would span a length scale ~80 #~! Mpc. The results of
this paper show that such voids encircled by filaments are
statistically significant features. Although our analysis also
finds a web of interconnected filaments that spans length
scales larger than 80 2~ ! Mpc and runs across the entire survey,
this is not statistically significant. The web arises from chance
interconnections between the filaments encircling different
voids.

Studies of the distribution of Abell superclusters (Einasto
et al. 1997b) show that the mean distance between neighboring
superclusters is about 50 2~! Mpc for poor superclusters and
about 100 2~! Mpc for rich superclusters. The distribution of

the SDSS superclusters (Einasto et al. 2003a) and the LCRS
superclusters (Einasto et al. 2003b) shows a similar behavior.
Visualizing the superclusters as being randomly distributed, we
would expect filaments joining the superclusters to develop as
the density field is progressively smoothened. Such filaments
will arise from the chance alignments of shorter, genuine,
statistically significant filaments. The filaments joining super-
clusters will span length scales comparable to the mean inter-
supercluster separation, and the statistical properties of
filaments would be stable to shuffling: i.e., it would not change
if the superclusters were rearranged randomly. Our results
may be interpreted as being indicative of the superclusters
being randomly distributed on scales larger than 80 A~! Mpc
with the mean intersupercluster separation also being of this
order.’

3 It is interesting to note that a study of the SDSS (EDR) superclusters
conducted by Doroshkevich et al. (2003) using Minimal Spanning Trees
concludes that the large-scale filaments appear to randomly connect the
sheetlike structures in denser environments.
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Fic. 4—Minimum value of the reduced x?(/) plotted for all six slices. It
varies from 1.4 to 2.6 and is in within the acceptable bounds. We conclude
from here that the scale of longest real filaments is ~60 4~! Mpc for all three
southern slices. For the northern slices this scale is ~70—80 2! Mpc. This
scale can also be interpreted as the scale beyond which the LSS in the universe
is homogeneous.

The presence of statistically significant features on scales
as large as 70-80 A~! Mpc may seem surprising given the
fact that the correlation analysis fails to detect any clustering
on scales beyond 30—-40 4~! Mpc. This is due to the inability
of the two-point (and higher order) correlation functions in
detecting coherence at large scales. Pattern-specific methods
(like Shapefinders) are necessary to detect and quantify co-
herent large-scale features in the galaxy distribution. It is in-
teresting to note that the two-dimensional power spectrum
for the LCRS (Landy et al. 1996) exhibits strong excess
power at wavelengths ~100 4~! Mpc, a feature that may
possibly be related to the filamentary patterns studied here.
The analysis of the three-dimensional distribution of Abell
clusters (Einasto et al. 1997a, 1997b) reveals a bump at £k =
0.05 & Mpc~! in the power spectrum. In addition, the recent
analysis of the SDSS shows a bump at k£ = 0.05 # Mpc™! in
the power spectrum (Tegmark et al. 2002). While it is inter-
esting to conjecture that these features may be related to the
presence of filaments, we should also note that the filaments
are non-Gaussian features and cannot be characterized by the
power spectrum alone.

A point that should be noted is that the filaments quite often
run in a zigzag fashion (Fig. 1), and the length of a filament that
spans a length scale of 80 2~! Mpc may be significantly larger
than 80 h~! Mpc. In addition, the present analysis is two-
dimensional, whereas the filaments actually extend in all three
dimensions. The length of the filaments may be somewhat
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larger in three dimensions, and a little bit of caution may be
advocated in generalizing our results.*

In the gravitational instability picture, small distur-
bances in an initially uniform matter distribution grow to
produce the large-scale structures presently observed in the
universe. It is possible to interpret the filaments in terms of
the coherence of the deformation (or strain) tensor (Bond,
Kofman, & Pogosyan 1996) of the smoothened map from
the initial to the present positions of the particles that constitute
the matter. Our analysis shows that the deformation tensor has
correlation to length scales up to 80 A~! Mpc and is uncorre-
lated on scales larger than this. The ability to produce statis-
tically significant filamentarity on scales up to 80 2~ Mpc will
be a crucial quantitative test of the different models for the
formation of large-scale structure in the universe.

We next address the question of the length scale be-
yond which the distribution of galaxies in the LCRS may
be considered homogeneous. The analysis of Kurokawa,
Morikawa, & Mouri (2001) shows this to occur at a length
scale of ~30 A~! Mpc, whereas Best (2000) fails to find a
transition to homogeneity even on the largest scale ana-
lyzed. The analysis of Amendola & Palladino (1999) shows
a fractal behavior on scales less than ~30 A~! Mpc but is
inconclusive about the transition to homogeneity. The re-
sults presented in this paper set a lower limit to this length scale
at around 80 ~~! Mpc, in keeping with estimates based on
the multifractal analysis of LCRS by Bharadwaj, Gupta, &
Seshadri (1999), who find that the LCRS exhibits homogeneity
on the scales 80—200 4~ ! Mpc. In a separate approach based on
the analysis of the two-point correlation applied to actual data
and simulations, Einasto & Gramann (1993) find that the tran-
sition to homogeneity occurs at about 130 4~! Mpc. For the
LCRS, the scale of the largest coherent structure is at least
twice the length scale at which the two-point correlation
function becomes zero. Beyond this scale the filaments inter-
connect statistically to form a percolating network. This fila-
ment-void network of galaxies is not distinguishable, in a
statistical sense, beyond scales of 80 #~! Mpc. If the LCRS
slices can be considered a fair sample of the universe, then
this suggests the scale of homogeneity for the universe.
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4 In this context, it is interesting to note that in a recent analysis of mock
SDSS catalogs based on ACDM model, Sheth (2003) finds the length scales of
the largest superclusters to be ~60 4~' Mpc. This indicates what might be
anticipated in extending this work to three-dimensional redshift surveys.
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